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PREFACE

This research is sponsored by the Advanced Research Projects Agency (ARPA) and
monitored by the U.S. Army Topographic Engineering Center (TEC) under contract
DACA76-92-C-0008, titled "Representation, Modeling and Recognition of Outdoor
Scenes". The ARPA Program Manager is Dr. Thomas M. Strat, and the TEC
Contracting Officer's Representative is Ms. Lauretta Williams.




1.0 OBJECTIVE

The primary goal of this project is to advance the state-of-the-art in scene interpretation for
autonomous systems that operate in natural terrain. In particular, techniques are being developed
for representing knowledge about complex cultural and natural environments so that a computer
vision system can successfully plan, navigate, recognize, and manipulate objects, and answer
questions or make decisions relevant to this knowledge.

2.0 APPROACH

This work integrates our continuing advances in four separate technologies to achieve the goal of
providing a foundation for the design of highly competent machine vision systems capable of
autonomous operation in the outdoor world:

* Stored knowledge (such as map data and object models) is used to overcome inherent
weaknesses in the best "self-contained” image-analysis algorithms. This approach is
reflected in the prior SRI development of the CONDOR system that relies on context,
function, and purpose, as well as visually observed geometric shape, to recognize scene
objects.

* Significant progress has been made in developing compact and expressive representations for
modeling, and ultimately, recognizing objects encountered in the natural world.
Computational efficiency, thus, real-time performance, is critically dependent on using
effective representations for both models and sensed data.

* Global optimization techniques are being developed that require reasonable amounts of
computation, but produce results not obtainable by local analysis methods. This work has
been applied to building volumetric models of objects detected in range data and stereo pairs,
as well as for delineation, partitioning, and feature extraction in single images.

* Techniques are being developed that are able to simultaneously, or incrementally, exploit
multiple views of a scene in compiling a complete scene model. The SRI-developed Epi-
polar plane image analysis technique is one example of how motion sequences can be used to
construct a geometric scene model that is superior to a sequence of independent stereo
reconstructions.

3.0 PROGRESS

As indicated, both theoretical and practical progress has been made in integrating semantic and
geometric information about a scene from stored knowledge, multiple views, and image
sequences. The results, to date, are centered on the development of representations and
associated methods for rapidly modeling natural terrain (at a level of organization higher than
that of the conventional dense array of depths), and on methods for recognizing important classes
of natural and man-made objects -- especially roads, trees, rocks, and terrain features.

We are also developing metrics for objective evaluation of scientific progress in the domain of
natural object recognition (we have taken a lead position in ARPA's benchmarking efforts in this
area). Fourteen papers have been published describing this work, and some of the algorithmic
techniques developed in this program are currently being integrated into a commercial
cartographic modeling system.




4.0 SUMMARY OF RECENT ACCOMPLISHMENTS

4.1

4.2

Recovery of Scene Geometric from Multiple Views

The development of an approach for integration of information acquired from multiple
views of a scene into a description of scene geometry continued. The approach uses a
new class of geometric primitives that permits simple expression of known constraints
and observed data, and also permits the use of practical optimization-based solution
techniques. This work will provide an effective way of allowing a robotic system to
incrementally build a progressively more accurate and complete model of the
environment in which it is operating.

Earlier work on this task involved the use of 3D hexagonal meshes. Our most recent
work involves recovering 3D surfaces of arbitrary topology from multiple stereo views
employing a new "particle-based" method. We start with several stereo-pairs of a scene
and use a conventional stereo-correlation algorithm to compute a disparity map for each
pair. Given camera models, the maps can be turned into "clouds" of 3D points. These
raw points are typically very noisy and a non-negligible fraction of them may be in error.
To overcome this problem, a three-step approach was devised:

1. Robust fitting of local surfaces to the points: Divide the 3D space into buckets and
fit a quadric patch in each bucket that contains at least a minimum number of
points. This first step eliminates the isolated errors and reduces the large number of
3D points to a smaller and more manageable set of patches defined by their center
of gravity and normal.

2. Global optimization of the patches: The positions of these patches can then be
optimized by minimizing an image-based objective function and interacting with
each other through forces that tend to align those that appear to belong to the same
surface.

3. Grouping of the patches into global surfaces: Patches that appear to belong to the
same global surface---that is, patches that are close and whose normals are
consistent---are grouped into global surfaces that can then be triangulated.

These three steps have been implemented and tested on both outdoor and indoor scenes.
For example, ground-level outdoor scenes containing rocks and trees, and scenes
containing complex objects---such_as a complete human head. The method successfully
recovers the main surfaces in the scene and rejects erroneous points from the correlation-
based stereo data that we use as input to our system.

Ten papers describing the work in this task area have been accepted for journal
publication and conference presentation. Enclosed are reprints of two of the published
papers that provide details about the implementation of both 3D meshes and particles.

Natural Object Recognition

The problem of automatically recognizing objects appearing in images of the outdoor
world has proven to be extremely difficult because of the lack of explicit shape models.
Most computer-based recognition techniques rely on explicit knowledge of shape,
however rocks, trees, and other natural objects cannot be successfully described in this
way; even such generic man-made objects as roads, bridges, and buildings are more
likely to satisfy functional constraints rather than being exemplars of some geometric
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blueprint. It is necessary to replace explicit shape with a more general way of describing
natural objects and complex man-made structures. What is required are a few techniques
that can reliably organize the pixel-level image data as a basis for higher-level analysis.
Finding the appropriate combination of low-level data description and associated
extraction techniques is a key problem in machine vision, and one of the primary
concerns in this project. Two of the techniques that have emerged from the work in this
area meet the criteria of generality and robustness. The first is a generic way to find
candidate line structure in an image; some of this work is described below and also in a
paper published in the 1994 IU workshop proceedings (reprint in Appendix A). The
second is a way to organize such data into perceptually coherent and semantically
meaningful units. In another paper (reprint in Appendix B), we describe our progress in
the design of a partitioning technique that is extremely robust in accomplishing the
perceptual organization task and also describes how these two techniques can be applied
to the problem of road delineation in aerial images. Our most recent work focuses on the
development of additional algorithms for the recognition of a wide range of natural
objects of importance to robotic navigation and outdoor scene modeling. Some of this
work is described below, and a paper is in preparation.

Obstacle Detection for Robotic Navigation

To be employed in practical outdoor robotic systems of military interest, our scene
interpretation techniques must be fast, reliable, and have modest resource requirements;
on the other hand, full object recognition is often not required. We have adapted some of
our recognition techniques to satisfy the above requirements in detecting raised-object
and depression-type obstacles to cross-country robotic vehicle navigation. For these types
of obstacles, a significant part of the localization problem can be captured in a differential
description of the discontinuities in a stereo disparity image. A method that locates these
discontinuities quickly, and measures the differential properties of the disparity surface
on either side of each such discontinuity has been developed. This is done with a family
of recursive filters that form one-sided estimators of differential properties. Points of
maximal difference between opposing operators are taken as discontinuities and the
estimates around these points are used to measure both the disparity difference and the
gradients around the discontinuity. These values are then translated to depths, depth
discontinuities, and surface slopes. To reason in this way, using a disparity image, we
must have a reliable, dense image. However, stereo mismatches produce unreliable
disparities, extraneous discontinuities, and (even if eliminated) gaps in the disparity
image. Bad matches are eliminated by using only those stereo matches that are "best
matches" in both the left/right and right/left directions. Once this is done, we take
advantage of the forward-looking ground-based nature of these images and eliminate all
matches that do not belong to a monotonically decreasing sequence of disparities from
the bottom to the top of the image. (This technique assumes that there are no observable
overhangs, a constraint that is reasonable in many environments and viewing situations.)
Once these problem disparities are eliminated, the image is filled in by interpolating
values from neighboring regions. The resulting disparity image is reliable, dense, and
locally smooth. It is, thus, well suited for the analysis described.

We also continue work to build simplified geometric descriptions of the terrain using
triangulated meshes. A mesh is first overlayed on the disparity image such that no facets
cross discontinuities; then, it is reduced in complexity so as to minimize the number of
triangles in the mesh. The technique developed for this is similar to "mesh decimation”
used in graphics, but constant reference is made to the initial disparity image, thus
ensuring that the final mesh is still an accurate representation of the disparity image. We
have been able to achieve data reductions of over 98% of the data in the original mesh.




When this mesh is transformed into real-world coordinates, we have a simplified, still
accurate, triangulated description of the visible surfaces.

4.4 Line Drawing Interpretation from Man Machine Communication

Earlier in this project, we made a significant new advance in the long-standing problem
of duplicating human performance in recovering 3D models of terrain and man-made
objects from qualitative and imprecise line drawings (e.g., of terrain elevations as in an
approximate and uncalibrated contour map, or building edges, as in a single approximate
projection of the corresponding wire-frame). This work can greatly simplify
communication problems between man and machine in such applications as robotic
mission planning, and in construction of databases for use in robotic navigation. A paper
describing this work has been published.! Ongoing work has led to additional (new)
results of both theoretical and practical importance; these new results, still being further
developed and evaluated, will be described in a later report.

5.0 DETAILED DISCUSSION OF WORK ON GEOMETRIC RECOVERY

The recovery of surface shape from image cues, the so-called "shape from X" problem, has been
the focus of a major effort in the computer vision community; no single source of information
"X," be it stereo, shading, texture, geometric constraints or any other, has proved to be sufficient
across a reasonable sampling of images. To get good reconstructions of a surface, it is necessary
to use as many different kinds of cues with as many views of the surface as possible. In this
effort, we have devised a working framework for surface reconstruction that combines diverse
image cues, such as stereo and shape-from-shading, obtained from multiple images whose
vantage points may be very different.

The task is difficult because image analysis techniques typically provide incomplete, and
sometimes erroneous, information about the location of 3D points in space. Grouping these
points into meaningful surfaces involves solving a problem akin to the notoriously hard
segmentation problem. As a result, a majority of recent computer vision approaches to surface
reconstruction rely on much cleaner sources of 3D data -- such as laser range maps or medical
volumetric data -- as their input. Many of these approaches also assume that there is one, and
only one, object of interest whose topology is known in advance so that a particular model -- be
it rigid or deformable -- can be fit to the data.

More specifically, to recover surfaces from images, one must contend with the following
difficulties:

e Real-world scenes often contain several objects whose topology may not be known in
advance: some surfaces are best modeled as sheets while others are topological spheres or
contain holes. One cannot typically assume that there is only one object and one surface of
interest or expect to be able to easily cluster the 3D points derived from stereo into
semantically meaningful groups.

e The 2-1/2D assumption that most traditional interpolation schemes make is no longer _valid'
when reconstructing complex 3D scenes from arbitrary numbers of images and arbitrary
viewpoints. Surfaces often overlap and may be visible in one view, but not another.

1 An Optimization-Based Approach to the Interpretation of Single Line Drawings as 3D Wire Frames, IICV
9(2):113-136, Nov. 1992




* The 3D points derived from range maps--computed using passive or active methods--form an
irregular sampling of the measured surfaces. In addition, small errors in disparity can result
in large errors in world position.

* Even the best vision algorithms make occasional blunders that must be identified and
eliminated. Furthermore, the corresponding erroneous 3D points are often correlated with
one another so that they cannot be eliminated by robust estimation alone.

To overcome these problems, we need a surface representation that can be used to generate
images of the surface from arbitrary viewpoints, taking into account self-occlusion, self-
shadowing, and other viewpoint-dependent effects. Clearly, a single image-centered
representation is inadequate for this purpose. Instead, object-centered surface representations are
required. Here, we advocate the use of two such representatlons that have proved effective under
different circumstances:

e Triangulated Meshes: A regular 3D triangulation is an example of a surface representation
that meets the criteria stated above. Our approach to recovering surface shape and
reflectance properties from multiple images is to deform a 3D representation of the surface so
as to minimize an objective function. The free variables of this objective function are the
coordinates of the vertices of the triangulation, and the process is started with an initial
surface estimate. We have successfully used these meshes to model surfaces whose topology
is known a priori, such as human faces or relatively low-resolution terrain.

» Sets of 3D Particles: Real-world scenes often contain several objects whose topology may
not be known in advance -- some surfaces are best modeled as sheets, while others are
topological spheres or contain holes. One cannot typically assume that there is only one
object and one surface of interest. To deal with these complex issues, we replace the
triangulations by a set of connected surface patches or "oriented particles." These particles
are instantiated by fitting local surfaces to traditional stereo data, and their positions are
refined by minimizing an objective function analogous to the one used for triangulations.

Both of these techniques are described in detail in the enclosed two reprints (Appendices C and
D).

We view the contribution of this work as providing both the framework that allows us to
combine diverse sources of information in a unified and computationally effective manner, and
the specific details of how these diverse sources of information are derived from the images.

6.0 DETAILED DISCUSSION OF WORK ON NATURAL OBJECT
RECOGNITION

In this etfort we are developing and evaluating two distinct approaches to natural object
recognition. The first is based primarily on geometric information about the scene as obtained
from stereo or some other form of range sensing. The second approach is based on using
information about illumination, shadows, shape, color, and texture as extracted from a single
color image of the scene (or possibly from multiple images -- but not requiring the explicit
availability of range data). The first steps of merging this work in these two approaches has been
taken.




6.1

6.2

Geometric Techniques for Recognizing and Modeling Terrain Features

Because of their importance to unmanned ground vehicle (UGV) navigation, techniques
are being developed for the recognition and delineation of rocks and other relatively
small objects and terrain features. We intend to make these techniques sufficiently
general so as to allow their use in finding a wide range of compact objects protruding
above the ground surface.

In one part of this investigation, we are concerned with locating rock-like objects and
obstacles within the operating environment of a forward-looking pair of stereo sensors.
Here we adopt a very simple geometric model of these obstacles in order to satisfy the
requirements for high-speed detection and limited computing power needed for practical
UGV applications.

We begin by assuming that these obstacles are distributed sparsely enough so that we
may examine each in relative isolation and locate them by using only simple local
patterns in the disparity image(s). When the obstacles are spatially separated, the
detection patterns depend primarily on the conjunction of disparity discontinuities (e.g.,
occlusion edges) and stereo shadows (regions visible from only one camera). We are
currently conducting experiments to determine whether or not this approach is robust in
the presence of multiple objects overlapping along a line-of-sight. A key feature of the
local pattern used to locate these obstacles is the "top"” of the object, a near-horizontal
spatial discontinuity. This feature is flanked by either a stereo shadow region or a high
disparity gradient. If both L-R and R-L disparity images are made available, then mirror
images of this pattern may be sought in the two disparity images. The coordinated
detection of these features locates the presence and extent of such obstacles.

For both rock-and ditch-like obstacles, a significant part of the localization problem can
be captured in a differential description of the discontinuities in the stereo disparity
image. We have a method that locates these discontinuities quickly, and measures the
differential properties of the disparity surface on either side of each such discontinuity.
The discontinuities are found with a conventional Canny/Deriche filter and the
differential properties are computed using a set of least-squares-based one-sided
estimators oriented perpendicular to the extracted edges.

In the simplest application (to obstacle detection) of the above approach, varying the
thresholds throughout the image, dependent on the stereo geometry, allows the detection
of obstacles based solely on size. This type of analysis depends critically on the
parameters of the low-level stereo fusion used. The resolution determines the lower limit
on the size of obstacles detectable. The amount of smoothing used to condition the
results also affects detection, especially if the method used obscures discontinuities. In
general, however, without additional texture or chromatic input, it is difficult to
distinguish between obstacles (e.g., rocks) and nonobstacles (e.g., clumps of grass). In
the work discussed below, we respond to the need to distinguish actual hazards, such as
rocks, from benign, but similarly shaped objects, such as bushes.

Semantic Scene Description

Our goal in this subtask is to be able to recognize natural objects and terrain features in
the context of creating an overall scene sketch. We are not only interested in recognizing
(and delineating) isolated objects, but wish to describe and exploit their interrelationships.
Objects of interest include rocks, trees, brush, grass, water, snow, dirt, sky, ridgelines,
holes/ditches, roads, paths, fences, poles, cliffs, ground plane, and shadows.
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A key problem is the obvious necessity to replace reliance on (generally unavailable)
explicit shape with more general ways of recognizing and describing natural objects and
complex man-made structures. Our approach was to first select (or define) a smaller set
of primitive (but pervasive) features that can reliably be extracted from most images of
natural scenes. These primitives (currently consisting of color, texture, shadows, depth,
surface orientation, and linear structures) are combined to identify clear instances of the
natural objects of interest using a "production rule" type paradigm?, and then, using these
recognized objects as exemplars, we invoke a nearest-neighbor statistical classifier to
label other, possibly less obvious, instances of the objects we are looking for.

Thus, for example, we have implemented a color-based classification algorithm using
classical feature-space partitioning techniques and run a significant number of
experiments on outdoor images from a variety of sources. We have been successful in
distinguishing certain categories of objects, such as between vegetation and rocks (or
other nonliving terrain features). While not sufficient to produce a complete semantic
labeling of a scene at a detailed level of recognition, this approach appears able to
complement our geometric recognition techniques and allow us to successfully deal with
some of the critical open problems -- such as distinguishing between real obstacles (e.g.,
rocks) and navigable areas (e.g., grass or brush-covered flat terrain). A paper describing
this work is currently in preparation.

Techniques to recognize the more important and prominent extended linear terrain
features and navigation obstacles are being developed; these include the skyline,
ridgelines, and the leading edge of drop-offs and ditches. These features appear as
significant linear discontinuities in the disparity image, and as intensity discontinuities in
a color or grayscale image. By first locating depth/disparity and intensity or color
discontinuities, and then linking these local features, we can find and label both small
compact objects and the major extended linear scene features. For example, by first
addressing the simpler problem of delineating the skyline in a color image, we are then
able to choose a region above the skyline as an exemplar of "sky" for use by the color
classifier. Texture, shadows, and shape will allow us to find a few obvious instances of
vegetation and rocks as additional exemplars for the color classifier. We can now label
most of the scene using the color classifier, and then (at least partially) check the result
for semantic consistency: The pixels labeled sky by the color classifier should all exit
above the skyline found by the linear delineation process; if the skyline is interrupted by a
nearby (as measured by our depth measuring techniques), thin, raised object, the object
should be labeled as a tree or a pole; and a relatively horizontal/flat region, depending on
its color, should be either grass, dift, water, or rock, and so forth.

The key ideas underlying this work are:

* Models described by objective functions referenced to some appropriate
representation, and feature extraction accomplished by finding image structures for
which the relevant objective function is optimized.

» Recognition-technique selection and corresponding parameter settings based on
context.

2 Strat and Fischler, "Context-Based Vision," IEEE PAMI, Oct. 1991
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» Selection and intense development to produce a few highly refined and reliable "core”
techniques as the base for implementing a much broader class of feature
recognition/extraction methods.

In an enclosed paper (Appendix A), we describe the most recent work on the detection
and extraction of linear features in imaged data -- one of the core techniques. Following
the paradigm outlined above, we use the minimum spanning tree, and a new "network”
structure we devised, as the primary representations. Semantic constraints control the
tree/network construction, and thus, establish the universe of possible paths (both in our
data structures and in the image being analyzed). We define the characteristics of the
linear structures we are looking for as attributes of the branches in the tree/network, and
provide computationally effective methods for finding paths that maximize scores for the
desired attributes. Filtering techniques, parameterized by context evaluation procedures
(or externally provided information) operate at a number of decision points in the
optimization process, and in final acceptance of the selected path(s). We have
implemented specialized versions of the generic delineation technique to recognize
various types of extended terrain features and navigation obstacles including the skyline,
ridgelines, trees, roads, and paths.

As an additional part of this effort to construct an overall scene sketch, we are developing
a stereo interpretation system for visual navigation that produces a sparse triangular-mesh
representation of the ground geometry, and that is augmented with semantic labels for
obstacle-like structures.

We begin by edge-processing the disparity image using two thresholds. The first is a
constant that covers uncertainty in the stereo algorithm that generates the disparities. The
second varies with the disparity so that only discontinuities corresponding to significant
real-world discontinuities are retained. A dense triangular mesh is then constructed over
the disparity image so that no mesh elements cross the detected discontinuities. Finally, a
fast decimation procedure is applied to the mesh to minimize the number of triangles
needed to represent the surface. The resulting mesh is guaranteed to not deviate from the
initial disparity data by more than a given threshold value (usually the same one used as
the constant edge threshold), and has mesh boundaries only at internal discontinuities and
data boundaries (which can be distinctly labeled). We have been able to achieve data
reductions of over 98% of the data in the original mesh. When this mesh is transformed
into real-world coordinates, we have an accurate, triangulated description of the visible
surfaces.

The mesh structure can now be-efficiently labeled to represent geometrically and
semantically significant properties of the image and environment. For example, we need
only project the vertices of the mesh into three-dimensional space in order to project the
entire mesh. Once this is done, we can relabel the discontinuous boundary edges in the
mesh, depending on whether the leading surface is tangent to the line of sight or not (a
limb edge versus a surface discontinuity).

Finally, the shape and extent of the discontinuities in the image are used to identify
potential obstacles. Localized depth discontinuities are associated with the tops and sides
of objects such as rocks, while extended discontinuities in the ground surface are
associated with ditches.
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Locating Perceptually Salient
Points on Planar Curves

Martin A. Fischler, Member, IEEE, and Helen C. Wolf

Abstract—This paper describes the underlying ideas and al-
gorithmic details of a computer program that performs at a
human level of competence for a significant subset of the curve
partitioning task. It extends and rounds out the technique and
philosophical approach originally presented in a 1986 paper by
Fischler and Bolles. In particular, it provides a unified strategy
for selecting and dealing with interactions between salient points,
even when these points are salient at different scales of resolution.
Experimental results are presented involving on the order of 1000
real and synthetically generated images.

Index Terms—Computer vision, salient points, critical points,
curve partitioning, curve segmentation, curve description.

I. INTRODUCTION

CRITICAL problem in machine vision is how to break up

(partition) the perceived world into coherent or meaning-
ful parts prior to knowing the identity of these parts. Almost
all current machine vision paradigms require some form of
partitioning as an early simplification step to avoid having
to resolve a combinatorially large number of alternatives in
the subsequent analysis process. Given this critical role for
partitioning as a functional requirement of a complete vision
system, it is a major challenge to find some significant subset
of the partitioning problem for which an algorithmic procedure
can duplicate normal human performance. This paper describes
the underlying ideas and algorithmic details of a computer
program that performs at a human level of competence for a
significant subset of the curve partitioning task. It extends and
rounds out the technique and philosophical approach originally
presented in a 1986 paper by Fischler and Bolles [6]. For
example, it provides a unified strategy for resolving conflicts
in selecting among neighboring potential partition points that
may be salient at different scales of resolution.

While our focus in this paper is on curve partitioning
in a generalized setting (the curves in our experiments are
mostly without semantic meaning), and where the criterion
for success is duplicating normal human performance, finding
salient peints on image curves (potential partition points) plays
a critical role in both two- and three-dimensional (2-D and
3-D) object recognition, in curve approximation, in tracking
moving objects, and in many other tasks in machine vision.

In many approaches to 2-D object recognition, objects are
represented by their boundaries, and the recognition tech-
niques depend (directly or indirectly) on locating distinguished

Manuscript received August 11, 1992; revised February 3, 1993. This work
was supported by the Advanced Research Projects Agency. Recommended
for acceptance by Associate Editor E. Hildreth.

The authors are with SRI Interational, Mento Park, CA, 94025.
[EEE Log Number 9214424,

points along the boundary; typically these distinguished points
are discontinuities or extrema of local curvature (sometimes
called comner points) and inflection points (e.g., [14]). In 3-D
recognition, partitioning is typically one of the first analysis
steps—especially when objects can occlude each other. Hoff-
man and Richards [10] argue that when 3-D parts are joined to
create complex objects, concavities will generally be observed
in their silhouettes, and that segmentation of image contours
at concavities ( the maxima of negative curvature along the
contours) is a good strategy to decompose (even unmodeled)
objects into their “natural parts.”

In cartography, computer graphics, and scene anaysis, it
is often desirable to partition an extended boundary or a
contour into a sequence of simply represented primitives
(e.g., straight line segments or polynomial curves of some
higher degree) to simplify subsequent analysis and to minimize
storage requirements (e.g., [21]). We present some examples
of the use of our algorithm for this purpose (see Figs. 9 and
10 and the brief discussion on this topic in Section VII).

Comers on the contours of imaged objects are often used
as features for tracking the motion of these objects and for
computing optical flow [5], [16], [13].

In our current work concerned with delineating linear struc-
tures in aerial images, the technique presented in this paper
was an essential component of the system (briefly described
in Appendix E) that produced the results displayed in Fig. 17.

II. PROBLEM STATEMENT

In its most general sense, partitioning involves assigning,
to every element of a given object set, a label from a
given label set. For our purposes in this paper, the object
set is the set of points along a curve (or contour segment)
lying in a prescribed region of a 2-D plane. Although we
deal with cases where the points in the object set do not
form a continuous digital curve, in most of our exposition
in this paper we will assume that the curves are contin-
uous' and nonintersecting. Our label set is binary, points
will be called either significant (critical) or nonsignificant,
for some specified purpose. In [6] it is demonstrated (or at
least argued) that perceptual partitioning is not independent
of some assumed task or purpose. In this paper we focus
on one of the three tasks discussed in the above reference:
selecting a small number of points (called critpts) along a
curve segment that could be used as the basis for recon-

'Each point of the nonbranching 1-pixel-wide curve, with coordinates
(. y), has one or more neighbors with .r-coordinates in the set (x4, o, r—1)
and y-coordinates in the set (y + 1. y. y — 1).

0162-8828/94$04.00 © 1994 IEEE
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CURVE PARTITIONING: Instructions
For each enclosed curve:
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Assume that 10 years from now you will be asked to reconstruct the given curve.

A reasonably correct reconstruction will be rewarded by a large sum of money (say

$5000). You can record, for later use, the locations of up to nine points along the

curve to help you do the reconstruction -~ but it will cost you $200 for each such

point (to be subtracted from your prize if you receive the reward). Please mark your
| selected points on the curve. Do not select the endpoints, they will be provided free.
; Do not take more than one minute per curve.

(b)

©)

Fig. 1. Comparison of human and SSS algorithm performance in the curve
partitioning task. (Each of the curves used in the experiments with human
subjects was contained in a square that was 1.5 in on a side.) (a) Points chosen
by 9 of 11 test subjects. (b) Critical points found by the SSS algorithm. (c)
Points chosen by at least 1 of 11 test subjects.

structing the curve at some future time. Fig. 1 shows the
specific instructions and curves used in one set of relevant
experiments involving human subjects; this figure also shows
the critpts that were selected by the subjects, and the compa-
rable results produced by our algorithm (called the saliency
selection system, or SSS, and described in detail in Appendix
B). /

In order to separate the generic partitioning criteria used by
human subjects from criteria based on their past experience,
such as when the subject is able to assign a name to the curve
(e.g., the curve looks like the letter “s”), we used “random”
curve segments for our experiments; the technique employed
to generate the segments is described in Appendix A. We
also wanted to avoid having to deal with the recognition
of global features (e.g., symmetry or repeated structure, or
even straight lines and analytic curves) as a condition for
making critpt selections; avoiding this problem is justified if
we are correct in our belief that local and global analysis
are accomplished by separate mechanisms. In order to deal
with global features, the complexity of any solution would
be expanded enormously since a whole new vocabulary of
such features and their representations would have to be
implemented. The generation and use of random curves took
care of this problem also (i.e., it is highly unlikely that
symmetries or repeated structure would ever be generated by
our random . process).

III. RELEVANCE, PRIOR WORK, AND CRITICAL ISSUES

The partitioning problem has been a subject of intense inves-
tigation since the earliest work began in machine vision. It has
been widely assumed that in order to reduce the combinatorics
of scene analysis to a manageable level, it is necessary to
decompose images into their meaningful component parts as
one of the first steps in the analysis process. The difficulty
arises from the need to partition the image into parts before we
know the identity of those parts. The underlying assumption
then is that there are generic criteria, independent of the goal of
the analysis, that if discovered could be used to obtain useful
(or, at least, intuitively acceptable) partitioning; additional
problem dependent criteria could be always added to produce
a more relevant result for some particular purpose.

The partitioning problem becomes progressively more diffi-
cult as we increase the number of dimensions in which we are
working; in this paper we address only the 1.5-D problem
of partitioning planar curves. ‘A specific criterion that can
form the basis of such partitioning was originally proposed by
Attneave [1]—points at which the curve bends most sharply
are good partition points.? This idea has been the starting point
for most of the subsequent efforts in curve partitioning, but
attempts to convert this abstract concept into a computationally
executable procedure, one that gives intuitively acceptable
results, have met with limited success.? [11], [14], [15], [19],
[21], and [23] are representative of work in this area.*

The main problems we must solve are as follows:

1) A way of assigning a measure (or degree) of
saliencylcriticality’ to each point on a curve. Most
investigators have equated sharp bending -of a curve
with the mathematical concept of curvature (Appendix
C), but curvature is not well defined for a finite sequence
of points (which is how our sensor acquired curves
are generally represented). Further, it is not obvious
that the mathematical definition of curvature is the
best computational approximation to the human criteria
for criticality. In Fischler and Bolles [6], bending is
interpreted as deviation from straightness—it is closely
related to proposed approximations to mathematical
curvature, as illustrated in Figs. 2 and 3, but has a
number of advantages: It is an easily measured quantity,
even for digital curves (i.e., sequences of coordinate
pairs), and as discussed in the next section, its local
extrema are in better accord with human preference

2Hoffman and Richards [10] give convincing evidence that we should
distinguish between positive and negative curvature maxima. That is, on
closed curves, extreme points of negative curvature—associated with object
concavities—have greater utility as partition points than positive curvature
maxima, but the positive maxima (and inflection points) play an important
role in describing the individual segments.

3 As noted below, most of the work on the curve partitioning problem,
especially recent work, has not been concerned with duplicating generic
human performance but rather with performing specific visual tasks having
different criteria for success.

4The approach taken by Wuescher and Boyer is distinct in that they first
extract contour segments of approximately constant curvature and then infer
the location of partition points as a secondary operation.

SWe will use the terms saliency and criticality somewhat interchangeably
in this paper. However, saliency can be considered to be the generic subset
of points that are critical for some partitioning task. -
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Fig. 2. Comparison of SSS and R/J-cui'vature evaluated on test curve 189. (a) Test curve 189. (b) SSS selected critpts. (c)
R/J-curvature selected critpts. (d) Anomalous area (magnified). (e) Plot of R/J-curvature along test curve. Abscissa = sequence
number of point on curve. Ordinate = angle (in degrees) computed at point. (Angle-arms are 10 units each for R/J-C; standard stick

lengths of 10 and 20 units are employed by SSS.)

The continuous curve in (e) represents R/J-curvature along the test curve shown in (a). The vertical lines in (e) mark the
sequentially numbered critpts selected by SSS as shown in (b). The critpts corresponding to the extreme values of R/J-curvature
shown in (c) are marked as circles in (¢) The arrow in (c), and in the corresponding location in (e), illustrates an anomalous
selection using R/J-curvature. (d) shows the computed values of R/J-curvature, 153°, at the preferred location and 122° at the

location of the anomalous selection.

(choices based on approximations to the definition of
mathematical curvature occasionally include anomalous
points, as shown in the examples of Figs. 2 and 3).

A way of adjusting the criticality of a given curve-point
to take into account its interactions with its neighbors;
i.e., local context. It is obvious that human subjects will
often avoid assigning a critpt label to both members
of a pair of points, even when both points have high
(independent) criticality values, if the points are close
neighbors along the curve. The basic approach of local
nonmaximum suppression is not sufficient, in itself, to
duplicate human performance.

A way of dealing with the interactions between critpts
that are significant at different scales of resolution. If
a human subject looks through a fixed sized window
at the same curve segment displayed at two different
magnifications, the selected critpts will not always be
the same, and the selection at the lower resolution will
not always be a subset of those at the higher resolution
(e.g., Fig. 4). This is in contrast to the commonly held
assumption that critpt assignment should be independent
of scale of resolution.

A threshold of significance—a minimal level of criti-
cality below which variations are considered to be noise
and no critpt designations are made. (Some investigators
reject the idea that any user supplied parameters or
thresholds should be necessary.)

We have addressed the above issues through the solutions
to the following set of subproblems.

1)

Definition of an algorithmic procedure (which is pa-

() (® (©

(d)

Fig. 3. Comparison of SSS and R/J-curvature evaluation on test curve 166.
(a) Test curve 166. (b) SSS selected critpts. (c) R/J-curvature selected critpts.
(d) Plot of R/I-curvature along test curve. Abscissa = sequence number of
point on curve. Ordinate = angle (in degrees) computed at point. (Angle-arms
are 10 units each for R/J-C; stick length is 20 units for F/B-S.

The continuous curve in (d) represents R/J-curvature along the test curve
shown in (a). The vertical lines in (d) mark the sequentially numbered critpts
selected by SSS as shown in (b). The critpts corresponding to the extreme
values of R/J-curvature shown in (c) are marked as circles in (d). The arrows in
(c), and in the corresponding locations in (d), illustrate anomalous selections
using R/J-curvature.

rameterized to deal with noise and scale) for assigning
criticality values to each point on a curve independent of
decisions made about the locations of (other) critpts. The
solution to this problem, essentially the procedure given
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(a)

(b)

Fig. 4. Curvature and saliency are functions of curve resolution. As illustrated in (a) above, we can draw more than one visually
acceptable tangent to many of the points on this curve at the given resolution. As resolution increases, tangent 2 would dominate at
point x; as resolution decreases, tangent 1 would dominate at the same point. In (b), the angle at x can be seen as 45° at one scale
and 90° at a larger scale. Thus, curvature and saliency are not unique properties of curve points.

in Fischler and Bolles [6], provides answers at a human
level of performance for isolated critpts (i.e., along a
section of a random curve, generated as described in
Appendix A, for which human subjects select only one
critpt). Thus, for the domains we’ experimented with
(and especially the domain defined in Appendix A), we
were able to assign fixed values to scale/resolution and
noise/significance parameters so that our program would
make the same selections as human subjects when there
was near-unanimous agreement among these subjects.
This algorithm is described in Appendix B.

2) An analysis of how geometric scaling of the input
curve, and resolution-specific operations on the curve,
can be equated, and thus the development of a basis for
normalizing criticality scores across scale.

3) Development of a general approach to the problem
of resolving the competition/cooperation interactions of
geometrically related objects based on local dominance.
The same machinery used to deal with interactions at a
given scale of resolution is also used to resolve conflicts
across different scales of resolution.

In the remainder of this paper, we describe our solutions to
the problems enumerated above and then present examples and
experimental results to justify the design decisions we made
and to illustrate the performance capabilities of our algorithm.

IV. EVALUATION OF SALIENCY

Saliency is a critical attribute (for description and recogni-
tion) assigned to perceived things in the world by the human
visual system (HVS). Although this is an elusive concept in
general, task specific specializations of this concept are easily
found that elicit consistent choices across human subjects. An
acceptable computational definition of contour/curve saliency
must provide the following.®

» The specification of a procedure that quantifies the abrupt-

ness and extent of the deviation of a curve from its
straight-line continuation; a sharp bend is more salient

SIn this paper we are primarily concerned with saliency based on local
cues; locations on a curve where there is a transition from one type of
curvature behavior to another, e.g., from perfectly straight to wiggly, may
also be psychologically salient, but such forms of global saliency are beyond
the scope of our current investigation.

than a shallow one, and the greater the excursion, the
more prominent/salient the feature.

» Agreement with human judgement in terms of selection
and accuracy of placement of the critical points (in some
well-defined context).

A. Computational Definition of Saliency

Conventional definitions of curvature present a number
of serious problems with respect to their use as a saliency
measure in computational vision (CV). First, the mathemat-
ical definition is based on the properties of a curve in the -
infinitesimal neighborhood about the point at which curvature
is being measured. For the finite precision quantized curves
dealt with in CV, it has been difficult to find a suitable
approximation to the limiting process originally intended for
use on mathematically continuous curves. Second, it is readily
observed that saliency is not an infinitesimal point property
but is based on some finite extent of the curve. A proposed
solution to both problems, offered by Rosenfeld and Johnston
(R/T) [19] was to find an appropriately sized segment of the
curve about the point in question and take a “snapshot” of the
limiting process at this single (implied) scale. That is, rather
than the rate of change of tangent angle with respect to curve
length, R/J proposed measuring the angle between two fixed-
length chords, where the lengths correspond to the computed
“natural scale” of the curve about the given point. We will call
this curvature analog the R/J-curvature. There are a number of
other definitions of mathematical curvature (e.g., the limiting
radius of a circle whose three defining points converge at the
curve-point in question) which have analogs that could have
been used in place of the angle measure in R/J-curvature, but as
we show in Appendix C, these definitions are monotonically
related and do not really present distinct alternatives. Thus,
R/J-curvature is a suitable representative for the whole class
of mathematical curvature-measure analogs.

In [6], our concern was not to find a good digital analog
for curvature but rather to find an effective measure of
saliency. The quantity defined in that paper can be viewed as
a curvature-extremum measure in which the limiting process
(in scale) is replaced by a scanning process (in space) more
appropriate to digital curves. The scanning process is parame-
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terized by scale, and the resulting measure is a signed quantity
which we call F/B-saliency (F/B-S).

Although the particular choice of a curvature measure as a
component in a complete system for selecting the most salient
points (critpts) on a planar curve depends on many factors,
it is still interesting to compare the raw scores returned by
curvature analogs represented by the R/J-curvature with the
extreme points (ultimately) selected by our algorithm (SSS)
as shown in Figs. 2 and 3 for a randomly generated curve.
In these figures we observe problem situations that highlight
some of the differences between the two underlying metrics
(R/J-curvature and F/B-saliency).”

There are some problems with any raw measure of curvature
that must be dealt with using procedures that invoke (at least)
local context. For example, in Fig. 3 we see a case (double
arrow) where two critpts were selected at almost adjacent
locations along the curve. This undesirable behavior was not
eliminated by the simple nonmaximum suppression filter that
produced good results in most other situations. It is necessary
to use more specific criteria in deciding when two critpts are
too close together, and also what to do when the adjacent
points have equal saliency scores (e.g., arbitrarily eliminate
one of them or eliminate both and place a new critpt between
them). In Fig. 3 we see cases (two single arrows) where almost
invisible features were chosen as critpts because they did have
locally extreme curvature scores. How do we decide when to
reject such occurances? In Fig. 2 we see a case where a critpt
(designated by an arrow) was inserted at a location displaced
from the position we consider correct; this was due, in part,
to the length of the arms of the angle measuring “operator”
relative to the size of the feature (see Fig. 2(d))}—it is not
always possible (or practical) to find an appropriate operator
size for every potential feature. In the following sections (and
appendixes) of this paper we describe and justify the methods
we employ to deal with these problems. The issue we are
primarily concerned with in this section is the choice of a
basic saliency metric. We justify our preference for the F/B-S
metric on two grounds:

1) Unlike the fixed-scale mathematical (FSM) curvature
analogs (e.g., R/J-curvature), F/B-S rarely makes an
error in positioning a critpt, or in ignoring a salient point
that human observers would select. The issue here is ro-
bustness. F/B-S integrates information over an extended
set of “looks” at the curve segment containing the point
whose saliency is being measured. FSM techniques take
a single look at the situation. Thus, our main problem
with the F/B-S metric is selecting the most salient of
the selected critpts to be retained as our final result (the
filtering operation generally involves the elimination of
less than half of the points originally selected).

"In both of the figures, we used fixed common scale parameters for both
metrics as noted in the figure captions. It should be remembered that R/J-
curvature, as we define it in this paper, is representative of a whole class
of curvature-based metrics and is not intended to duplicate the complete
Rosenfeld/Johnston algorithm—they also incorporate a procedure for finding a
preferred stick length. However, many of the problems with the performance
of the complete algorithm, which are discussed in [4] and in other of the
papers we reference, can be observed in the performance of the R/J-curvature
metric.
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2) The F/B-S metric is responsive to both the curvature
and the size of a curve feature. This provides a common
basis for ranking critpts at a given scale (so that the
larger of two geometrically similar objects is assigned a
higher saliency score) as well as across scales by taking
into account the size of the operator. The FSM-curvature
analogs are insensitive to the size of the feature—they
inherit the mathematical property that curvature is a
point property and only the smallest neighborhood about
a point that allows us to measure curvature is relevant
(this implies a single natural scale at any point on a
curve, a concept we reject, e.g., see Fig. 4).

B. Comparison of the Saliency Selection System
(SSS) with Human Performance

The primary criterion for judging the competence of the
overall saliency selection system (SSS) we present in this
paper is its ability to match human performance—both in
the defined task and with respect to generic evaluation of the
selected critpts. We performed a set of informal experiments
with 11 human subjects (also see the experiments described in
{6]). The instructions given to the subjects and the resulting se-
lections are shown in Fig. 1. We also show the selections made
by the SSS algorithm. The results of these (and additional but
not described) experiments can be summarized as follows

» At least 9 of the 11 subjects selected the same set of six
or more critpts on each of the four curves we used in the
experiments, and the SSS chose the same set of critpts.
Every critpt selected by the SSS was also selected by at
least one human subject.

« In spite of the high degree of consistency in the overall
selection of salient points, the human subjects differed in
the order in which they chose these points. We tried a
number of experiments in which the only difference was
a very slight change in the wording of the instructions
and obtained different orderings (across the same set of
selected points) from our subjects. It is obvious that the
subjects used a global strategy to match the task (different
for each subject) in choosing the order in which the points
were selected-—even though the specific points selected
were largely determined by local context.

In addition to the curves used in the human experiments,
we ran the SSS algorithm on (the order of) 1000 randomly
generated curves with no obvious errors. Fig. 5 shows the
results of a (typical) sequence of 40 consecutive experiments.

V. DEALING WITH THE PROBLEMS OF SCALE AND RESOLUTION

A vision system, concerned with creating a description of
some object that may be encountered again in the future,
perhaps when the object is closer or farther away, must
take scale or magnification into account when deciding what
shape elements to pay attention to. Under extreme changes in
resolution, when salient features might appear or disappear, it
may not be possible to make an informed judgement in the
assignment of relative saliency scores; but for a limited range
about a given resolution, this should indeed be possible.
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Fig. 5. Critical points found by the SSS algorithm for a set of 40 random curves.

Obviously, geometric properties of objects that are invariant
over scale are especially valuable in describing and recogniz-
ing the objects, since absolute scale is often impossible to
judge in an image, and even relative scale can be difficult to
describe or measure if the measurement must be referenced to
the global geometry of the object. One of the main issues we
address in this paper is how to define extrema in the bending
of a curve as a local effectively scale-invariant property that
is in agreement with the judgement of the human visual
system.

If we define criticality of points on a digitally represented
curve in terms of quantities that have dimensions that must be
measured by some physical process, then there is no direct way
of invoking such formally defined mathematical concepts as
the derivative, or curvature, which require limiting processes
of infinite resolution. Approximations to these concepts are
resolution dependent (e.g., the size of the operator employed),
and measurements made on most objects will not scale-in any
simple or uniform way. Further, if we examine a curve through
a fixed-size window (either a fixed region of a computer screen
or the foveal region of the human retina) and successively
increase the resolution at which the curve is displayed, some
of its parts will eventually disappear from view and some of
the smaller original structures, which were not significant, will
now dominate the visible appearance of the curve (e.g., Fig.
4).

If the mathematical definition of curvature were applicable
to digital imagery, then many (but not all) of the issues of
scale could be resolved. There is still the problem that avery
small glitch can have a very high value of curvature but a
very low psychological significance. Thus the scale or size of
a feature (e.g., the glitch) is an issue. The term “feature” does
not appear in our problem definition; in fact, by focusing on
local curve properties, we had hoped to eliminate the need
to invoke this concept since an appropriate definition is far

from obvious.® Since scale can’t be ignored (even if we had
a good approximation for curvature in the digital domain that
was independent of scale) the following questions arise:

+ The distinction, if any, between resolution and scale;

* How to choose a range of scales appropriate to the
specified performance criteria; '

* How to measure criticality at different scales;

* How to compare criticality values computed at different
scales;

+ The relationship between smoothing and scale change;

» The relation between operator size and scale change;

'+ How to make cooperation/competition judgements across
scales; and

* How to determine the features for which we expect
consistency (of criticality scores) to hold across scales,
and where such consistency can’t be expected (if the latter
were never the case, we could always do our analysis
at one scale and compute the criticality values at other
scales as needed).

Although consistency at all scales and for all features is not
possible, over some range of scales (say 5:1) we expect there
to be a normalization factor that allows us to compare the
saliency scores computed at one scale with values computed
at other scales. We would also expect that relative locations
of local extrema for certain features would remain fixed as
a curve is scaled, regardless of the size/scale of the operator
that assigns the criticality scores.

Some of the earliest work (e.g., Rosenfeld and Johnston)
on finding salient points merged the problem of assigning
a curvature measure to a point with that of determining the

8 Intuitively, there are sections of any given curve that we call features;
these entities provide the psychological basis for the selection and relative
saliency of the associated critpts. Critpts are markers that define the shape
and boundary of features; the extent of the curve corresponding to a feature
will generally subsume the region of support for the curvepoints comprising
the feature, Features can overlap, and their boundaries are not always apparent.




LA

. i TS
R

e PRt 5

SRS

FISCHLER AND WOLF: PERCEPTUALLY SALIENT POINTS ON PLANAR CURVES

scale at which to measure curvature. The key idea is that
each point has a single scale at which its curvature should
be measured; this scale is usually found by a search process
over successively larger scales until some measured quantity
achieves a local extremum.

A. Change of Scale versus Change of Resolution

If we magnify a continuous curve that was originally
represented at infinite precision, every point of the new image
corresponds to a point in the original image, but its z- and y-
coordinate values have been multiplied by some real number,
which we will call the scale factor. No information was
introduced nor lost, but the physical space required to render
the curve has increased. However, if the original curve was
represented at finite resolution (e.g., each point as a pair of
integer coordinates), then (say) doubling the scale leaves us
with a disconnected set of points. Filling in the gaps requires
introducing new information. Here we will say that a change of
resolution has occurred (a change in resolution can also result
in the loss of information, as in the case of demagnification
or smoothing at some fixed resolution). Thus the concept of a
scale change corresponds to a reversible transformation while,
in general, a change in resolution involves an irreversible
process in which information is lost (as in smoothing) or new
information is introduced (as can occur in zooming).

If we compute the curvature for points on a continuous
(infinite resolution) curve at two different scales, we will
generally get two distinct sets of values (e.g., a circle with
radius 2 is a scaled version of a circle with radius 1, but
by definition their curvatures are in the ratio 1:2. On the
other hand, the angles of a triangle remain unaltered under a
scale change). It will be the case, however, that for smooth
curves the local extrema will be found at corresponding
locations—but even here, the numerical values of curvature
will not scale in any simple way (curvature is a nonlinear
function).

B. SS8S Mechanisms for Evaluating Saliency
at Different Scales and Resolutions

In designing a computational module to evaluate saliency
subject to the ideas discussed above, we can pursue at least
three distinct strategies:

1) Assume that saliency is independent of scale, or that
there is a natural scale associated with each location on
the curve that must be discovered.

2) Use a fixed scale saliency measure, but generate multiple
versions of the given curve at some predetermined set
of scales. ‘

3) Parameterize the saliency measure to give results ap-
proximating those that would be obtained from strategy
2 for the selected scales.

We previously argued against strategy 1 on the assumption
that a unique natural scale cannot generally be associated with
a single curvepoint (see Fig. 4). We have chosen strategy
3 since strategies 2 and 3 are conceptually compatible, but
3 could be computationally more efficient if we can find a
simple way to use some combination of operator scaling and
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Fig. 6. Comparison of curve resolution versus change in operator size (stick
length) on test curve 37f. Critpts are labeled with rank ordering of their scores.
(The scaled curves are drawn to fit into a standard-size box.) (a) Scale 1; stick
length 10. (b) Scale 2; stick length 20. (c) Scale 1; stick length 20. (d) Scale
0.5; stick length 10.

score normalization so that both approaches give (nominally)
the same scores in most situations. Intuitively, doubling the
stick length (in the F/B-S metric) for a simple convex section
of a curve should result in four times the score assigned to
the corresponding critpt: The stick is now positioned twice
the distance from the critpt in most of its “looks” (ie.,
placements of the stick which subsume a curve segment
containing the critpt), and there are twice as many looks. Thus,
the procedure we employ, normalizing all scores by dividing by
the square of the stick length, will leave invariant the saliency
scores assigned to features that should be scale invariant,
such as the angle formed by two (effectively) infinite straight
lines; Appendix D provides a more complete discussion of
this point. On the other hand, for those features that have
limited extent along the curve, comparable to the scales we
wish to discriminate among, the larger scaled versions of
the features will be assigned higher scores. Fig. 6 shows the
correspondence between scale parameterization of the F/B-
saliency measure versus scaling the curve itself for some
example curves.

VI. COOPERATION/COMPETITION INTERACTIONS
BETWEEN CRITICAL POINTS

An important contribution of this paper over the work
presented in [6] is a major revision of the approach to filtering
the critpts, based on comparisons at a given scale as well as
across different scales. At a conceptual level, there are two
main differences. .

First, in the earlier work we did not use the information
about the sign (concavity/convexity) of the computed F/B-
saliency; in our current algorithm, we separate all the candidate
critpts into two sets corresponding to positive and negative
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Fig. 7. Problem situations correctly handled by the SSS algorithm. The
critpts at peaks 2 and 3 should be both accepted or both rejected in (a).
In (b), the critpts at all peaks surrounding the peak at x are approximately
equal in saliency; they should all be accepted or all rejected. The pattern of
accepted critpts should be symmetric in (¢) and (d).

F/B-S.” These two sets are processed independently of each
other (by identical procedures), and the resulting selections
are combined by logical union to produce the final output.
Our own observations confirm those of other researchers (e.g.,
Hoffman and Richards), that positive and negative curvature
extrema appear to be distinguished from each other by the
HVS, in part because they play different roles in partitioning
and description tasks.

Second, in the earlier work we used a simple dominance
criterion for competition of closely spaced critpts detected
at different scales.. A critpt detected at some given scale
would suppress all critpts detected at smaller scales (shorter
stick length) that were located within a specified scale related
distance from it. This rule rarely produced “ugly” errors, but
occasionally it caused the obviously correct critpt to be deleted
in favor of one slightly displaced from the preferred location.
A significant portion of the work described in this paper has
been focused on finding a more effective and uniform basis for
establishing lacal dominance. In other sections of this paper we
provided a justification for a normalization factor that would
permit us to assign a saliency ranking to competing critpts,
regardless of the scale at which they were originally detected.
Thus, competition, both within and across different scales is
now treated in a uniform manner. In the following subsection
we discuss some of the specific problems that must be resolved
in competition resolution, and the algorithmic procedures we
invoke to deal with these problems.

A. Mechanisms for Filtering Competing Critpts

As already noted (previous subsection), there is no com-

9 For an open curve segment, the assignment of positive versus negative is
arbitrary; the important consideration is that we use the information about the
direction of deviation of the curve from the stick to separate detected critpts
into the two possible categories, which are then processed separately.
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Fig. 8. SSS selected critpts on various curves with global structure. (a) 455
curve points, 16 critpts. (b) 335 curve points, 5 critpts. (c) 503 curve points,
8 critpts. (d) 425 curve points, 13 critpts. (e) 282 curve points, O critpts. (f)
606 curve points, 16 critpts.

petition between points having differently signed saliency
scores and scores computed at different scales (i.e., with
different length sticks) are normalized to make them directly
comparable. In Fig. 7 we present a number of difficult problem
situations we must correctly resolve.

In Fig. 7(a) and (b) we see situations where nonmaximum
suppression'® over any fixed interval will eliminate some
critpts but will accept adjacent critpts of approximately equal
saliency to those eliminated—this form of filtering is not
consistent with selections made by human observers and would
be unacceptable behavior in an algorithm intended to perform
at a human level of competence.

In Fig. 7(c) and (d) we see some additional situations, which
are not likely to occur in our experimental domain (i.e., curves
generated by the procedure described in Appendix A), but
which we would nevertheless like to handle correctly. In both
of these examples, we expect to get a symmetric arrangement

10Nonmaximum suppression refers to the procedure in which each critpt

suppresses other potential critpts, with lower saliency/criticality scores, falling
in its region of support.
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1d: curve vs spline
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3a: 170 curve points 16 §3b: linear fitto 13 critpts
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Fig. 9. Examples of curve reconstruction based on using straight line and spline interpolations of critpts. (a) Input curve showing
SSS selected critpts. (b) Straight line interpolation of critpts. (c) Spline interpolation of critpts. (d) Comparison of original and

reconstructed curves.

of accepted critpts; we require correct filtering of critpts with
(approximately) equal saliency scores, even though they are
separated by significant curve-length intervals.

One of the algorithmic mechanisms we devised to deal with
the above problems (described in greater detail in Appendix
B) is to construct an array with one slot for each indexed
location along the curve (actually two such arrays, one each
respectively for positive and negative saliency scores). Each
slot is either free or owned by exactly one critpt. A critpt
occupies only one of the slots it owns; this occupied slot
corresponds to its actual location along the curve. A “new”
critpt!!, contending for a slot, must have a normalized score
greater than the existing value stored in the slot to capture it. If
a new critpt captures a slot occupied by (as opposed to simply
being owned by) a previously dominant critpt, all of the slots
of the now-dominated critpt are also captured. This mechanism
provides a way of avoiding the need to choose a fixed-sized
base of support for a critpt and successfully deals with the
problem situations depicted in Fig. 7(a) and (b). The additional

1 All the potential critpts are detected, sorted, and then entered into the
array in increasing order of saliency to avoid sequence dependent effects.

algorithmic mechanisms introduced to correctly handle the
situations of Fig. 7(c) and (d) are discussed in Appendix B.

VII. ALGORITHM PERFORMANCE

The algorithm discussed in the previous sections of this
paper, and described in detail in Appendix B, has been
compared with human performance (Fig. 1) and has been run
on hundreds of randomly generated images (as described in
Appendix A) without making any obvious errors. In all these
cases the same set of parameters was used with no operator
involvement. Fig. 5 shows 40 consecutively generated random
curves and the critpts selected by the algorithm. Fig. 8 shows
additional examples (also using the standard parameters) that
illustrate performance results on curves with characteristics
outside the specific experimental domain that was our main
focus. Fig. 17 in Appendix E shows results of the algorithm
run on curves extracted from real images.

In Attneave’s original paper, and in a number of recent
publications (e.g., Imai and Iri; Teh and Chin) critpts were
used as the basis for reconstructing a curve using straight
line and spline interpolation. That is; the critpts were a highly
compressed representation of the qualitative information stored
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Fig. 10. Examples or curve reconstruction based on using straight line and
spline interpolations of critpts. (a) Input curve showing SSS selected critpts.
(b) Straight line interpolation of critpts. (c) Spline interpolation of critpts. (d)
Comparison of original and reconstructed curves.

in the original curve that allowed a recognizable version of the
curve to be reconstructed by a simple algorithmic procedure.

In Figs. 9 and 10 we show some typical examples of curves
regenerated from the critpts extracted by the SSS algorithm.
In these cases the noise threshold was reduced to the lowest
level permitted by our current implementation, but all other
parameters were left unaltered. The spline reconstructions
were found to be very good in general, even though the SSS
algorithm was not designed to be used for this application. The
two types of error that occur are illustrated by curves 10(5)
and 10(6). In curve 10(5a) an arrow shows where an additional
critpt could have been added to eliminate the discrepancy that
is apparent in 10(5d); the SSS algorithm found a potential
critpt at the location of the arrow but subsequently eliminated
it because its saliency score fell below the preset (standard)
significance level. In Fig. 10(b), the single critpt at the location
of the arrow doesn’t provide enough information to reproduce
the curve as precisely as desired at this location.

It is obvious that we could have designed the SSS algorithm
to produce as good a reconstruction as desired by performing
the comparison operation depicted in Figs. 9 and 10, and
accepting enough additional critpts to eliminate any significant
errors. In this case we would get better reconstructions at the
cost of choosing points that would not be selected by most
human observers. It is interesting to note that even though
the nominal task is curve reconstruction, there appears to be
a human criterion for saliency/criticality that falls a bit short
of what seems to be required for curve reconstruction without
noticeable error.

VIII. OPEN ISSUES AND UNRESOLVED PROBLEMS

The problem posed at the beginning of this paper (devising
a procedure to find salient points on reasonably well behaved
digital curves that have no global structures) appears to be
solved by the SSS algorithm—at least for curves that are geo-
metrically similar to those formed by the process described in
Appendix A. Where does this leave us in general? Obviously,
the issue of recognizing global structures is still open, but

the SSS algorithm still does very well on most examples of
unconstrained curves (e.g., see Fig. 8).

If we look more closely at the problem of local saliency
detection, there are a number of issues that are still not
completely resolved—most having to do with the digital grid
representation for curves and the choice of a distance metric
for digital curves. The most important of these open issues is
the anomalous behavior of the F/B-S metric in the presence
of very sharp angles. As noted in Appendix D, F/B-S peaks
for angles between 45° and 60° and then falls for sharper
angles. To the extent that this is a matter of concern, the
problem appears to be easily fixed by the augmented F/B-S
metric included in Appendix B; however, the augmentation
for sharp angles has not been fully tested.'?

Some additional issues we did not fully explore are: 1)
stability of critpt placement when curves are rotated on the
digital grid, 2) the use of floating point versus integer rep-
resentation for curvepoint coordinates, and (3) the relative
merits of Euclidean versus curvélengt'h distance for stick-
length determination. All of these matters were at least casually
examined, and none appeared to pose a significant problem or
present an opportunity for significantly improved performance.

There is also a set of open issues associated with the proper
selection of a set of stick lengths for saliency determination,
and the stability of critpt placement and ranking when small
changes are made in the selected stick lengths. Earlier in this
paper we argued that stick length is a problem-dependent
parameter. Critpts selected by a stick whose size is much -
smaller or larger than the associated feature will have reduced
scores; thus stick length provides a way of specifying the size
of features that are of potential interest.

With respect to stability, we would expect that over a
continuous range of stick lengths the critpts would remain rel-
atively fixed in location and ranking, with jumps occasionaily
occurring in both of these attributes—and indeed, we found
that this is the case for most of the curves we examined
(e.g., see Fig. 11 as a typical example). The one exception
occurs when a long segment of a curve has slowly changing
curvature, and here it is not clear where the critpts should be
positioned—even for human observers. For example, in Fig.
1, column 4, human subjects were inconsistent in the number
and placement of their selected critpts on the lower left lobe
of the curve. In Fig. 12 we show the performance of the SSS
algorithm in choosing critpts on a smooth curve with slowly
changing curvature, and even though there is some undesirable
drifting in critpt placement there is no obvious error in any of
the selected placements.

Stability of the selected critpts with respect to minor per-
turbations in the shape of the curve is another important issue

12The problem of very sharp angles did not arise in our primary experi-
mental domain for two reasons. First, on the digital grid, it is impossible to
construct an ideal angle smaller than 45° without aliasing. But the second and
more direct reason is that the minimum spanning tree (MST) technique we
employed, for constructing the random curves, will not produce very sharp
angles. Theoretically, the MST will not produce an angle smaller than 60°,
but because of digital effects and other processing steps angles as small as 45°
can occur. The authors of this paper have developed procedures for extracting
linear structures from imagery using a technique that employs the MST as an
initial filter (see [7]). For curves obtained by such a procedure, sharp angles
are eliminated.




DR A

FISCHLER AND WOLF: PERCEPTUALLY SALIENT POINTS ON PLANAR CURVES

4 ¢
i — n — 1 —
(a) (b) (c)
& | ’& &
7 7
" [ anaed W — \ E oy
@ (e) o

Fig. 11. Behavior of F/B-curvature with changing operator size (stick length)
on test curve 37f. Critpts are labeled with rank ordering of their scores. (a)
Stick length 10. (b) Stick length 13. (c) Stick length 14. (d) Stick length 15.
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Fig. 12. Behavior of of F/B-curvature with changing operator size (stick
length). Critpts are labeled with rank ordering of their scores.
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but is difficult to quantify in a general setting; one must first
provide a criterion for deciding when a perturbation is minor.
Although we did not attempt to formally explore this issue, a
few casual experiments indicated that the algorithm is robust
in this regard.

IX. DISCUSSION

Curve partitioning is an active research area that not only is
of theoretical interest as a basic element in pictorial description
(see, e.g., Attneave; Bengtsson and Eklundh; Hoffman and
Richards), and for providing insight into the partitioning
problem in general (see, e.g., Fischler and Bolles), but has
many potential applications. Some of the more immediate
ones include data compression by using critpts as the basis
for regenerating a curve by straight line or spline interpolation
(see, e.g., Imai and Iri; Teh and Chin), matching/recognition
using critpts and/or the partitioned curve segments (see, e.g.,
Mokhtarian and Mackworth; Wuescher and Boyer), and as
a key component of an interface for man-machine com-
munication about pictorial objects (the ability to point at
icons representing symbolic objects has revolutionized the
computer-user interface; to extend this capability, one would
like to be able to point to a location in an image and
have the machine be able to deduce the component being
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referred to—image partitioning in general, and especially
curve partitioning, are critical to this goal).

In this paper we have focused on one specific aspect of the
curve partitioning problem: duplicating human performance
in the selection of a small number of points (called critpts)
along a curve segment that could be used as the basis for
reconstructing the curve at some future time. Although there
will generally be a significant degree of overlap in the points
selected by the techniques referenced above (focused on
different applications), there are also significant differences.
There has been very little recent work on the generic problem
of choosing psychologically salient points with which to
directly compare our results. On the other hand, we have
conducted a relatively large number of experiments with
uniformly good results (e.g., see Fig. 5).

There are two major paradigms'? underlying the published
work on partitioning planar curves. The first involves obtaining
a mathematically differentiable representation of the given
digital curve using splining or Gaussian convolution (see, e.g.,
[14]). This gives good results for many applications, but the
salient points on the smoothed curve are often displaced from
their original locations (or eliminated). This paradigm is not
suitable for our purposes in this paper.

The second paradigm, which includes the work described
here, is to first measure some approximation to the curvature
at each point on a curve. This usually involves choosing, or
finding, an appropriate scale at which to make the curvature
measurement. This is typically accomplished by making the -
curvature measurement over increasingly larger curve seg-
ments (centered on the curve point being evaluated) until
either the computed curvature at the point or some related
quantity reaches a local extrema. Each point is assigned
a saliency/criticality value (its estimated curvature) and an
interval length along the curve centered on the point (called
its region of support). The region of support is then used for
nonmaximum suppression—each point suppresses other points
with lower criticality scores falling in its region of support.

Major differences between our approach and other work
under this second paradigm include:

e A generic saliency measure that often selects points
corresponding to local curvature extrema, but which in
many situations is in better accord with human selection
preference and placement accuracy.

» A distinct approach to the problem of dealing with
curve features salient at different scales. The conventional
approach is to associate a single scale with each curve
point, which in turn defines a fixed region of support to be
used for nonmaximum suppression. In our approach, we
measure the saliency of each curve point at a number of
different scales and have developed procedures for allow-
ing potential critpts, found at different scales and spatial
locations to compete!* with each other. This competition

13 Additional approaches are available for partitioning 1-D curves; for
example, see [7] or [22]. As noted in Appendix B, the 1-D partitioning
technique in [7] is used as a component of the SSS algorithm. )

4Tt is interesting to note that we have not found a use for cooperative

reinforcement; cooperation appears to be a global relation. Competition is
important at the local level (e.g., lateral inhibition).
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is not restricted to any fixed extent of the curve (which
thus avoids anomalous selections caused by an important
event occurring just beyond the fixed limit of search, i.e.,
the horizon effect).

Our approach to local saliency selection can be consid-
ered a form of automated preattentive perception. Potential
extensions could include dealing with more global curve
features, such as recognizing the intersection of extended
straight line segments, or transition points between analytic
curves with different parameters, or global symmetries and
repeated structure. Recognizing these more global structures,
and ranking them with respect to human perceived saliency,
may well fall outside the competence of the basic approach
described in this paper.

APPENDIX A
GENERATION OF RANDOM CURVES

The following method was used to construct the random
curves used in the experiments described in the body of this
paper.

1) Thirty (x,y) pairs are generated for each curve. Each
value of z and y are generated by .a uniform-distribution
(0-1) random-number generator and then multiplied by 100
to produce numbers (coordinate values) uniformly distributed
between 0 and 100.

2) The 30 points are next linked by a minimal spanning
tree (MST).

3) A diameter path is extracted from the MST, and the
ordered subset of the original randomly generated points that
fall along this diameter path are the input sequence provided to
a spline-fitting routine [3], which returns a continuous curve
represented by a sequence of (z,y) coordinate pairs. These
sequences, typically containing on the order of 150-250 points,
are the random curves used in our experiments.

APPENDIX B
AN ALGORITHM FOR COMPUTING CURVE-POINT CRITICALITY

The partitioning algorithm described in {6] has been mod-
ified as discussed below. -

The algorithm collects candidates (peaks) for the critical
points of a curve by examining the deviation of the points of
the curve from a chord or stick that is iteratively advanced
along the curve. Sticks of different lengths are used to find
critical points that are salient at different natural scales on
the given curve. (Except when explicitly stated otherwise, two
sticks were used for all the experiments discussed in this paper;
one of length 10 pixels and the other of length 20 pixels.) The
algorithm provides the option of using arc length along the
curve, or the Euclidean length of the stick, to determine the
separation of the endpoints of the stick on the curve; we used
the Euclidean length of the stick for all of the experiments
discussed in this paper. One end of the stick is advanced along
the curve, one pixel at a time, and the other end is placed at the
first (sequential) position further along the curve for which the
Euclidean distance equals or exceeds the specified stick length.

For each placement of the stick, an accumulator associated
with the curve point (in the interval of the curve between the

two endpoints of the stick) of maximum deviation from the
stick is incremented by the absolute value of the distance from
the point to the stick if this distance exceeds a predefined noise
threshold. However, for the given stick placement, if there is
more than one excursion (exit and return) outside the noise
region, the underlying model is violated and the accumulators
are not incremented. (The noise threshold was uniformly set
to 20% of stick length; thus a Euclidean deviation of more
than 2 pixels from a stick of length 10 was required to cause
any modification of the associated accumulator.)

To deal with direction-dependent effects, a complete tra-
verse is made in both directions along the curve summing the
results in the same accumulators. The points that have locally
maximum scores in the accumulators (called peaks) for any
of a given set of sticks are the points from which the critical
points will be selected.

The following information is collected for each peak and
used to find the critical points.

+ INDEX: The sequence number along the curve of the
point at which the peak was located.

» STICK: The length of the stick (in pixels) used to find
the peak.

+ DEV: The sign of the deviation of the peak with respect
to the curve.

* NSCORE: The normalized score, which is the score in
the accumulator for the peak divided by the square of the
stick length.

» TSCORE: NSCORE incremented by a small tolerance.
TSCORE = (1.01)NSCORE.

The peaks are divided into two groups with like-signed
deviation DEV. The critical points for the two groups are found
independently of each other, and their union is returned as the
set of critical points for the curve.

In finding the critical points, we stipulate that each peak’s
score has a region of support, plus and minus half its associated
stick length, on each side of its position along the curve. An
array (the support array) equal to the length of the curve is used
to store the support information. The support information for
a peak is a list (score INDEX STICK). For each peak, the
support information may be entered at every index location
covered by the region of support, depending on what was
previously stored in the location.

When information about a new peak located at INDEX*
on the curve is to be entered into the support array at some
permissible location, the first task is to decide what score
should be included in the information. Normally, it would be
the list (NSCORE* INDEX* STICK*). But if there already is
an entry at INDEX* and its score is > TSCORE¥, the adjusted
data is the list (TSCORE* INDEX* STICK*).

The element at INDEX* (where the new peak occurs)
in the support array is treated specially when entering the
information for a new peak. If there is an existing entry
at INDEX* in the array, and its score (call it CSCORE)
is > NSCORE* and < TSCORE*, the peak information
(CSCORE INDEX* STICK*) will be stored at INDEX* in
the array.
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For all other elements in the support region for the new
peak in the support array, an element at J is replaced by
the information for the new peak if there is no previous
entry in the array or if the score in the adjusted data list
described above for the new peak is greater than the score
in the existing entry in the array. In addition, if the entry J is
being replaced and J is also the INDEX for a peak that was
entered previously, the support information for the new peak
replaces the support information of the old peak wherever it
occurs in the support array (i.e., even outside the new peak’s
original support region).

The following table shows the support information for a new
peak if there is an existing entry in position J of the support
region that needs to be replaced. (The reason for this additional
complexity is to avoid the use of “hard” thresholds.)

Comparison at INDEX*  Entry for INDEX* Entry for J # INDEX*
(NSCORE* INDEX*  (NSCORE* INDEX*

CSCORE < NSCORE*

STICK*) STICK*)
NSCORE* < CSCORE (CSCORE INDEX* (NSCORE* INDEX*
< TSCORE* STICK*) STICK*)
(TSCORE* INDEX*
CSCORE > TSCORE* No change :
STICK*)

After the above processing, the critical points for the curve
are designated as those points whose index into the support
array equals the index stored in the information list of the
array element.

It can be seen that the order in which peaks are entered
into the support array can affect the final selection of the
critical points because a peak’s region of support can be
altered by the capture process and thus depends on the state
of the support array at the time the peak is entered. In our
implementation of the algorithm for running the experiments,
we entered the peaks into the support array as soon as they
were computed in order to gain computational efficiency and
simplicity, and we still obtained excellent results. From a
purely, theoretical viewpoint, a more principled and consistent
procedure would have been to first collect all the peaks for all
the sticks, then sort the peaks by their normalized scores, and
finally enter them into the support array in order of increasing
score.

A completely separate postprocessing step, described below,
is used to resolve the question of critical points that are close
together in score and vicinity after the above operations.

Augmentation of the Basic Algorithm: There are some
other details (of lesser theoretical interest) about the algorithm
that were not explicitly mentioned in the text of this paper,
or described above. For example, a special routine is used to
eliminate all but the maximum element (or the central element
in a run of equal values) in a dense sequence of (immediately
adjacent) peaks. This step is performed after the peaks are
detected but prior to entering them in the support array. This
filtering procedure, identical to the 1-D ridgepoint algorithm
described in [7], can properly handle the situations depicted
in Figs. 7(c) and (d).
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Fig. 13. Augmented and standard (unnormalized) SSS scores for angles at
increments of 5° (stick length 20). The bold curve shows the standard SSS
scores. The thin curves show the augmented scores for two different values of
NN at which we alter the way distance is measured from a curve point to the
stick (i.e., when the number of curve points between the end points of the stick
is greater than N times the stick length, the distance from the curve point to
the midpoint of the stick is used as the deviation of the curve from the stick).

To deal with the problem of competing critpts of approx-
imately equal saliency scores, we make three attempts to
resolve the conflict by successively increasing (one unit at a’
time) the stick size of the smallest stick involved in originally
choosing the competing points. If one of the larger sticks
produces a single point in place of the original set of competing
points, we accept the single point. If no acceptable solution
was found after three tries, we accept all the original critpts
(except when two critpts are so close together that they are
not visibly separated, a distance of less than 5 pixels, here the
program arbitrarily eliminates one of these two points).

To deal with the problem of very sharp angles (as discussed
in Section VIII and in Appendix D) we detect situations in
which the curvelength distance between the two endpoints
of an advancing stick is at least twice the Euclidean dis-
tance between these same two endpoints; in these situations
we measure the perpendicular distance from each subsumed
curvepoint to the stick (as in the basic algorithm) and also
measure the distance from each subsumed curvepoint to the
center of the stick; the larger of the two distances is used
to update the accumulator associated with the curvepoint. As
shown in Fig. 13, this modified distance metric eliminates the
anomalous behavior of the basic distance metric (see Table I)
in which the score in the accumulator for the vertex point of
an ideal angle (of less than 60°) monotonically drops to zero
as the angle decrease to zero degrees.!’

I5As shown in Fig. 13, switching to the modified distance metric when
.V = 1.85 rather than when .V = 2 would produce a smoother curve.
However, it is not clear that there is any significant performance difference
based on which of these two values is used; we ran some equally successful
tests using both values.
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R c
al b [ (] 4 /s
e INDD
(@) (b
In Figure 14(a):
#+@+e)? = &
(a+c)? = -4
atc = V88 -42
a = s-di-¢ (1)
: .8
d ~ 2
ad
z = — @
Substituting (1) into (2):
ad d
=% _ 2_gi-c) 2
= 8 - ( s dz ) 8 (3)
In Figure 14(b):
d4a-cf = &
(@a~-c)P = #-d°
a—~c = Vs2-d?
a = Vsi-di+ec 4)
g _ 8
d ~ z
ad
z = - (5)

Substituting (4) into (5):

z=%‘=( a’—d’+c)‘g

We note that ¢ and d are constants for given values of b and 8.

If we let ¢ = —bcos 8, then equation (6) can be used for all values of § between

0 and 180 degrees.

Fig. 14. Model used for computing normal distance = from curvepoint (arrow) to stick, in F/B-S, as a function of ideal angle 6,
given stick length s and stick placement with respect to curvepoint parameterized by distance b.

APPENDIX C
ALTERNATIVE DEFINITIONS OF CURVATURE

1) Let a, b and p be three points on curve Z in the sequential
order a, p, b, and consider the circle C,,; passing through these
points as a and b approach p. The limiting radius of Cgpy is
called the radius of curvature of Z at p. The reciprocal of
the radius of curvature is the curvature of Z at p.

2) Let 71 and T be the tangents, and N; and N, the
normals, at two neighboring points p; and p; on a curve Z.
Let the point of intersection of the two normals be m. The
angle between the tangents is equal to the angle between the
normals: Z(T1T3) = L(N1N?)

Let p, approach p; along the curve and consider the ratio
between Z(N;N;) and the Euclidean distance |p;p2| between
the two curve points. In general, this limit approaches a limit,

called the curvature k of curve Z at point p;:

lpip2|—0  |p1p2]
We note that % is equal to the reciprocal of the length of the

line segment that is the common limit of the two segments
mp; and mps:

k= im Z(N],NQ) = lim sin (NlNg)
lp1p2|—0  |p1p2] |p1p2|
—lim P2l 1
|mp1||p1p2] |mp |

3) Let a positive direction along a curve Z be selected, and
let ¢, measured in the counterclockwise sense, be the angle
the positive tangent to the curve makes with a fixed direction
in the plane. Then the rate of change of g with respect to the
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TABLE I
F/B-SALIENCY SCORES FOR A RANGE OF ANGLES AND STICK LENGTHS

Stick Length Angle (F/B-S) Score  Normalized Score
5 135 331 0.13
10 135 13.66 0.14
20 135 55.09 0.14
40 135 220.77 0.14
80 135 883.51 0.14
5 90 7.61 0.30
10 90 32.33 0.32
20 90 131.95 0.33
40 90 531.40 0.33
80 90 2130.63 0.33
S 60 9.79 0.40
10 60 43.71 0.44
20 60 183.72 0.46
40 60 752.41 0.47
80 60 3044.49 0.48
5 45 9.31 0.37
10 45 42.16 0.42
20 45 178.58 0.45
40 . 45 734.27 0.46
80 45 2977.01 0.47
5 30 7.34 0.29
10 30 33.52 0.34
20 30 142.59 0.36
40 30 587.52 0.37
80 30 2384.56 0.37

The values in the above table were computed using the model presented in Fig. 14,
and thus they will differ somewhat from the actual scores returned by the SSS algorithm
as described in Appendix B (largely because of digitization effects). The scores in the
table correspond to a zero level of noise elimination.

arc length s along the curve is called the curvature & of the
curve at the point at which it is computed.
dq
k(s) = —.
0)=5
Note that the fixed direction from which ¢ is measured is
arbitrary, and does not affect k; however & changes sign if we
reverse the positive direction along the curve. For the case of
rectangular coordinates, where the fixed direction is that of the
z axis, and the curve Z is expressed as a function y(z), then if

Y
= arctan(—).
q (55)
It can be shown that
d%y
dx?
5
2

1+ (dy/dz)?]

If z is represented in parametric form (s is arc length along
the curve)

k(z) =

z = [x(s), y(s)]
then (see either [14] or [23])
dzd’y _ dizdy

kis) = ds ds? ds? ds —.
) = i/ ds)? + (dy]ds) TR
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Fig. 15. Anomalous behavior of F/B-S metric for small angles. The normal
distance from stick s to curvepoint b (on curve adbec) is bf when the stick
is positioned between d and e. Intuitively, we would like the distance from b
to stick s to be some quantity measured inside triangle dbe.

Fig. 16. Nonsymmetric scores for forward and backward movement along a
curve produced by F/B-S employing a fixed Euclidean distance for stick size.
Consider stick s, as shown in position 1. A slight movement clockwise will
cause the stick to jump to position 2, skipping the indicated region. If the
stick was scanning the curve in the reverse direction, a skipped region would
occur on the opposite leg of the angle/curve.

the above references also provide expressions for the curvature
of a Gaussian convolved (smoothed) curve.

4) For discrete curves, i.e., curves represented by a list of
coordinate pairs, the limiting process is not well defined. A
commonly used method for approximating the curvature at a
point p on curve Z in this case is to compute the angle Zapb
between the two chords extending between p and points a
and b on Z, where a and b are some fixed distance along the
curve from p (a to the left and b to the right). If we define
the curvature at p to be the reciprocal of the radius of a circle
(1/7) passing through the set of three points (a, p, b), then for
s = |ap| we have the relationship:

k(p) = 1/r = (2/s)cos(Lapb/2)

We note that, for gngies measured between 0° and 180°,
the curvature measure 1/r is a monotonic function of Zapb.
That is, the radius of curvature decreases monotonically as
Lapb decreases. Thus, measuring saliency, either by fitting
a circle to the curve at a point of interest or by measuring
the angle between the arms of a straight-line approximation,
will produce a local curvature extrema at the same loca-
tion.

We also note that when Z(apb) is 180°, k = 0. As L(APB)
approaches 0°, r approaches s/2, which is geometrically
correct, but k(P) does not approach infinity as desired. Thus,
the range of values for k is from O (for a straight line) to s/2
for an angle of 0°. Obviously, if s approaches 0, as would




128

(a)
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(e)

Fig. 17. Application of the SSS algorithm to the problem of delineating linear features in aerial photographs. (a) Aerial photograph.
(b) Initial extraction of linear structure. (c) Filtered linear structure using SSS algorithm. (d) Delineation of major roads and trails.

(e) Partition points found by SSS algorithm on curves from (b).

be the case if a limiting process could be carried out, then k&
would indeed approach infinity for a zero angle.

APPENDIX D
PERFORMANCE CHARACTERISTICS OF THE
F/B-SALIENCY METRIC

There are a number of characteristics of the basie-F/B-
saliency that are not immediately obvious, and could lead
to anomalous behavior under appropriate conditions if not
corrected for. These characteristics include the following.

« Nonmonotonic F/B-S scores if we operate over the entire
range of angles between 0° and 180° (see Table I and Fig.
13). The scores increase monotonically as an ideal angle
(with infinite-length sides) decreases to approximately
45°-60°; then the F/B-S scores decrease monotonically
as the angle continues to decrease. This phenomenon is
caused by the situation depicted in Fig. 15 and can easily
be corrected for (if desired) using the modified distance
metric discussed in Appendix B.

+ Nonsymmetric scores for a curve segment evaluated in
the forward and backward directions. This is also a
consequence of the the situation depicted in Fig. 16 and
is handled by evaluating the F/B-S metric in both the
forward and reverse directions along the curve and adding
the two scores.

APPENDIX E
PARTITIONING CURVES EXTRACTED FROM AERIAL IMAGERY

A technique for detecting and delineating low-resolution
linear structures appearing in aerial imagery, such as roads
and rivers, was described by the authors of this paper in
an earlier publication [7]. The algorithm was effective in
finding such structures, but it provided no mechanism for
distinguishing between the semantically meaningful objects
and the accidental and irrelevant linear features found in
most real images. In work now in progress, we use the
SSS algorithm to slice up the individual curves found by
the delineation algorithm. We throw away the very small
resulting segments, which are typical of accidental linear
formations, and then further filter the longer segments with
respect to a set of semantic constraints. Those segments
that pass through the filtering process are then “glued” back
together to produce the desired delineation. This process is
illustrated in Fig. 17. Fig. 17(a) shows an aerial image, and
Fig. 17(b) shows the linear segments extracted by use of
the original delineation algorithm. Fig. 17(c) shows those
segments that passed through the filters mentioned above,
and Fig. 17(d) shows the result of a final step to retain only
the more significant.roads and trails. The two panes of Fig.
17(e) show the results of applying the SSS algorithm to some
of the 120 curves highlighted in Fig. 17(b) (they have been
isolated and separated into the two panes to allow clear display
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of the partition points and to prevent confusion due to the
intersections of distinct curves). The robustness of the SSS
algoritmn is essential in carrying out the filtering operation.
Insertion of extraneous partition points would cause the loss
of portions of the road network; absence of valid partition
points would allow meaningless appendages to become part
of the extracted network.
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Abstract

This paper describes the ideas, im-
plementation details, and experimental
evaluation of the linking component in
a major general purpose system de-
signed to delineate linear structures in
monochrome images. It further describes
the system context in which the the linker
must operate and one of the generic prob-
lems it must solve. This problem, detect-
ing a “random curve” embedded in a ran-
dom noise field, is a challenging “end-to-
end” problem in its own right — the pa-
per includes an analytical and experimen-
tal evaluation of the performance of the
linker in terms of its ability to duplicate
human performance in this task.

1 Introduction

Figure 1 shows a block diagram of the
complete system (LDS) we have designed
to delineate linear structure in the con-
text of a very wide range of applica-
tions. The first component, the detec-
tor/binarizer, accepts a graylevel image
and is intended to return a binary mask
that retains the linear structures of in-
terest in a form clearly visible to a nor-
mal human observer. The second com-
ponent, the generic linker (GL), uses

*The research reported here was funded by the
Advanced Research Projects Agency and moni-
tored by the U.S. Army Topographic Engineering
Center under contract DACA-76-92-C-0008. The
author also acknowledges the many contributions
made by Helen Wolf to the work presented in this

paper.

generic criterion (continuity/contiguity,
coherence/length) as the basis for ex-
tracting sequences of points that repre-
sent the perceptually obvious (curved)
lines present in the binary mask. The
third component, the semantic linker,
uses semantic knowledge and constraints,
relevant to some intended purpose, to fil-
ter and restructure the the raw output of

the GL.

Even a casual examination of the de-
lineation problem, especially in situations
where semantic constraints must be in-
voked, shows that no single closed de-
sign can hope to be generally effective.
Even to the extent that, in our system
design, we have been able to separate
much of the generic functionality from
the semantic operations, we still have
to be responsive to a significant num-
ber of distinct cases that require signif-
icantly different data structures and al-
gorithmic techniques. In particular, we
recognize (at least) four distinct types
of generic linear structure: (a) open-
paths, (b) closed-paths, (c) trees, and (d)
networks — each of these generic types
poses different computational problems,
and thus, the need for different algorith-
mic machinery and representations. Fur-
ther, the binary mask that provides the
input to the GL will not be perfect — we
characterize both the background and lin-
ear elements as being subject to either
independent or structured noise. Thus
there are at least 16 combinations of data
and noise types that must be considered
at the generic level. Fortunately, not all




of these combinations require distinct so-
lutions, but they do impose some differ-
ences in how the system should operate
to optimize performance.

In this paper we focus on the ideas
and implementation details of the generic
linker (GL) and describe in detail one of
its modes of operation: independent noise
in both the binary image (mask) back-
ground and embedded linear element(s),
and a problem context of extracting a
single (non-intersecting/open) linear seg-
ment. Thus, the prototype problem we
must solve is:

We embed a randomly generated curve
(initially, a continuous sequence of one-
pixels, see Appendix 1) in a mask that
has some specified ratio of one-pixels to
zero-pixels. The curve, prior to embed-
ding, has some specified percent of its
one-pixels set to zero. The noise param-
eters and curve length are chosen so that
the embedded curve is “perceptually ob-
vious” to almost any normal human ob-
server. We want the GL to delineate the
perceived curve — l.e., the curve the hu-
man observers sees, even if it differs from
the originally embedded curve.

2 Performance
Evaluation

Evaluation of performance requires a
specification of the “correct” answer to
the problem being addressed. In our
prototype problem, there are two possi-
ble correct answers: (1) “ground truth”
as represented by the originally embed-
ded curve, and (2) agreement with hu-
man perception — especially if our goal
is to duplicate human performance or to
interact with a human operator in the
performance of some visual interpretation
task. We note that because of the opera-
tion of the random processes, a particular
trial could produce a situation in which
the curve that best satisfies our gener-
ally valid selection criterion — and agrees
with the preferences of the HVS - does
not correspond to the embedded curve,

and in fact, there is no principled way to.
recover the originally embedded curve in
this case. This is the main reason for pre-
ferring agreement with human perception
over ground truth. However, in order to
run the large number of tests required for
meaningful evaluation of performance, we
must have a practical way of automat-
ically scoring our results (Appendix 2),
and comparison of the embedded and ex-

- tracted curves is the only feasible alter-

native. Thus, the experiments described
later use a combination of ground truth
and visual examination for evaluation.

3 Human Performance

Our overall system design goal was to du-

. plicate human performance in linear de-

lineation for perceptually obvious situa-
tions. We define perceptually obvious (or
“almost immediate perception,” AIP) to

- mean a situation where the human ob-

server appears to find the object he is

- looking for almost immediately, and does

not alter his answer on a more detailed
subsequent inspection of the image. For

. our prototype problem it is thus neces-

sary to have some understanding of the

- relationship between background (noise)

density, embedded curve density, and em-

. bedded curve length, to insure that the

desired AIP condition is satisfied. There
does not appear to be any relevant liter-
ature discussing this problem; although
some work by Zucker [6] established the
fact that a sequence of dots on a clear
background will appear to be a continu-
ous curve only if their density exceeds 0.2
Our observations in a set of both casual
and formal experiments are as follows:

o We used 200x200 pixel images in
all of our experiments; the images
were displayed on a Symbolics LISP-
machine CRT and occupied an area
approximately 6 cm. on a side; some
typical images are shown in Fig 2.
We generated binary images with
a specified uniform probability that




any given pixel would be assigned
a “one” value (typically, this value
ranged from .05 to 0.3). We also
generated a random 2-D continuous
curve (Appendix 1) which was then
subjected to a process that randomly
deleted points with a specified uni-
form probability (typically, the dele-
tion probability ranged from 0 to
0.2). The resulting random curve
was then “embedded” in the random
image (the logical OR of the corre-
sponding curve and image pixels was
used to replace the original image
pixel value). The human observer
does not know any of the experimen-
tal parameters.

For a given mask-noise-density, there
appeared to be a threshold curve-
length necessary for almost immedi-
ate perception (AIP) in most trials;
but if the curve-density was too low,
even an arbitrarily long curve didn’t
enhance the probability of AIP, in
fact, the longer the curve — beyond
the length necessary to nominally
produce AIP - the greater the op-
portunity for one of the intrinsic
problems (Fig 3) to occur and cause
an ambiguous situation that negates
AIP. If the curves were straight lines
or had some other predictable shape,
then this result would almost cer-
tainly have been different. It ap-
peared to be the case that for a
mask-noise-density of .1 the curve
density had to be 1.0; values of mask-
noise-density greater than .1 did not
permit reliable AIP to occur. The
minimum curve length for this case
was 30 pixels as a very rough ap-
proximation. In general, for values
of mask-noise-density greater than
.05, the curve density had to be at
least one order of magnitude (10-
20 times) greater, and the minimum
curve length had to monotonically
increase from a minimum value of
approximately 15 pixels.

4 The Algorithm

A first order solution would be to find
the densest path in the image longer than
some threshold length—- presumably only
one obvious candidate would be present.
It is computationally infeasible to at-
tempt to generate and inspect all paths,
so we need effective mechanisms for (1)
suggesting only those paths likely to con-
tain the correct solution, (2) a way of se-
lecting the best path from the restricted
set of choices, and (3) a way of dealing
with the residual problems presented in
figures 3 and 4.

The minimum spanning tree (MST) is
the best available candidate for getting
the connectivity right. It is a data repre-
sentation that can be efficiently computed
(order NlogN complexity) and which
links each point to its nearest neighbor
— a good start in generating dense paths.
Nevertheless, the MST is not guaranteed
to contain the desired solution (fig 4), and
since no data representation will elimi-
nate the intrinsic problems displayed in
fig 3, it is important to eliminate as much
of the noise as possible before (rather
than after) we begin our search for a best
path. An initial filtering step, prior to
generating the final MST can be accom-
plished by first partitioning the image
(random mask, RM) into “clusters” by a
generalized form of connected component
analysis ([1], [5], and Appendix 3). The
key idea here is that while path-density is
not a local image property, path-density
is functionally related to the correspond-
ing distribution and frequency of “gaps”
in the path which can be locally detected
and measured. Any curve which can be
extracted from an “n-cluster” (Appendix
3) cannot have a gap of size greater than
n. If we eliminate all n-clusters with fewer
than k elements (for some appropriate k)
we will eliminate most of the low den-
sity noise curves at the cost of removing a
few small sections of the embedded curve
(EC) we are searching for. (Table 6 in
Appendix 4 allows us to predict the per-



centage of EC lost in the filtering pro-
cess).

The above discussion provides the ra-
tionale for the following EC recovery al-
gorithm:

1. Measure the density of the RM (as-
suming the embedded curve will
not significantly effect this measure-
ment) as a way of predicting both
the noise statistics, and obtaining a
lower bound on the density of the EC
if AIP is to be possible.

2. Partition the RM into 1-clusters
(Appendix 3), and “throw-away” all
clusters with fewer than k pixels.
The algorithm uses the measured
RM density and the tables in Appen-
dices 3 and 4 to select an appropri-
ate value for k. For example, if the
RM density is in the range 0.08 to
0.10, then EC density is assumed to
be at least 0.95, and if k is set equal
to 12, then on average, less than one
noise cluster will be retained (Table
5) while 88% of the EC will be re-
tained (Table 6) in approximately 6
separate 1-clusters.

3. Generate a MST for each cluster re-
tained in the previous step and ex-
tract its diameter path [1]. “Trim”
these paths to eliminate potential
false tails (Fig 3) using the approach
described in step (6). The result of
this step (PATHS1; Fig 5) provides
a framework for the final solution.

4. To recover the pieces of the EC we
threw away in step (2) we now re-
peat steps (2) and (3) first partition-
ing the RM into 2-clusters. The cor-
responding numbers, setting k = 10,
are that 100% of the EC will be re-
coverable, but these pieces must be
extracted from approximately 100 2-
clusters (Appendix 3). The result of
this operation is called PATHS2 (Fig
5).

5. In order to extract the desired miss-

ing pieces of the EC from PATHS2
- which may be contaminated with
a considerable amount of noise, we
assign a nominal weight of 100 to
each point of PATHS1 and a weight
of 1 to each point of PATHS2 (we
require a large differential weight-
ing, the specific numbers are not
important). We now repeat steps
(2) and (3) a third time using just
the weighted points in PATHS1 and
PATHS2 (All-Path-Points; Fig 5).
We form 20-clusters, construct the
MST for each cluster, extract the
highest-weight path (rather than the
longest path) for each MST, and re-
tain the highest-weight path as the
desired EC. The weighting “trick”
used in this step is one of the key

ideas underlying the extraction algo-:.

rithm; the “maxpath” algorithm [1]
used to extract the diameter/longest
path in a MST is able to use any at-
tribute of the points in a branch of
the MST as the criterion function to
be optimized (when all the weights
are set equal to 1 the longest path,
in the sense of the greatest number
of points, is extracted).

. A final trimming step is invoked to

(try to) eliminate false tails (Fig 3).
Trimming is applied to the ends of
the EC, obtained in the previous
step, by first recursively deleting the
end five pixels of a 15 pixel seg-
ment with density less than some
threshold value based on RM density.
(A conservative setting is 0.7, be-
tween the mean density of the noise
produced 2-clusters and the antic-
ipated density of the EC; see Ap-
pendix 3.) A second trimming step
deletes very short end-pieces identi-
fied by the curve partitioning tech-
nique described in [4].



5 Experiments

To evaluate the the effectiveness of our
system, we ran hundreds of experiments
on images randomly generated as de-
scribed earlier. The results of the exper-
iments were evaluated both by direct in-
spection of the delineations produced by
the system, and by an automatic scor-
ing function (Appendix 2). In the for-
mal experiments, the lengths of the ran-
dom embedded curves (EC) appearing in
each trial was held to the constant value
of 120 pixels — a large enough value to re-
move modest variations in this parameter
from significantly affecting the results of
the experiments. We varied the random
mask (RM) density from an upper value
of 0.1, the point at which AIP is no longer
consistently possible for human subjects
regardless of EC density or curve length,
to a lower value of 0.05; and we varied the
EC density from an upper value of 1.0 to a
lower value of 0.85 These parameter set-
tings were not provided to the recovery
algorithm.

When the EC density was sufficiently
high, our system was able to perform re-
markably well in recovering the actual
embedded curve, and even when we em-
bedded curves in RM’s with densities of
.2-.3 (in informal experiments), where hu-
mans have trouble finding the curves,
we could usually perform the delineation
task reasonably well (i.e., recover the
originally embedded curve).

Table 1 presents the results of the for-
mal experiments used to evaluate the
competence of the algorithm described
earlier. A score of 0-15 usually implies
little or no visible deviation from human
preference, a score of 15-30 generally im-
plies some deviation from human prefer-
ence - or an ambiguous situation with re-
spect to where a tail should be pruned. A
score greater than 30 was typically an er-
ror — both in terms of human preference
and (obviously) in recovering the origi-
nally embedded curve.

The table shows that for the range of

parameter values employed in the exper-
iments, the performance of the algorithm
was very good. There were no gross errors
(i-e., no scores > 30), and more than 90%
of the scores were in the error-free range
of values. The few marginal scores could
probably have been eliminated by hav-
ing the algorithm use a narrower range of
control settings in response to the mea-
sured RM density. On the other hand,
the algorithm may require more exten-
sive changes to deal with very low den-
sity curves embedded in low density noise
fields (an underlying design assumption
was that the background noise density
would be high — near the upper limit of
human AIP).

6 The Complete Linear
Delineation System

This paper discussed one mode of op-
eration of one of the three major func-
tional blocks of the linear delineation sys-
tem shown in Fig 1. The first block,
the detector/binarizer, was described in
a prior publication [3] — it work very well
and has not undergone any significant
changes. The third (newest) block will
be described in a later publication.

The complete system (still in devel-
opment) has been tested and performs
well in a wide variety of potential ap-
plication domains, including delineation
of roads (Figs 6,7), rivers, rail-lines and
other linear structures appearing in aerial
imagety. It has also been used to de-
tect terrain features for use in ground-
level robotic navigation — including the
skyline, ridge-lines, trees, and paths.

In normal operation, the GL is not re-
quired to employ the hierarchical strat-
egy developed for the difficult variation
of the extraction problem posed in this
paper. It is usually the case that the lin-
ear structures we are interested in have
long continuous segments visible in the
imagery, and as is obvious from our ex-
perimental results, these segments can be




No. of Trials | RM Density | Curve Density Score Distribution (%)
(length 120) | 0-5 | 6-10 | 11-15 | 16-20 | 21-30 | > 30
50 .10 1.00 | 92 6 2 0 0 0
30 .08 0.95| 73 17 0 10 0 0
50 .05 0.90 | 80 12 2 6 0 0
30 .05 0.85 | 50 30 14 3 3 0

Table 1: Experimental Results

found and extracted in a dense random
noise background even if “fusion” (Ap-
pendix 3) has occurred. Actually, struc-
tured rather than random noise is the
more common problem and the seman-
tic linker was developed to handle these
cases. As can be seen in Fig 1, the GL
has feedback paths which allow it to au-
tomatically adjust the binarizer thresh-
olds, both at a global level, and in local
parts of the image. In “blind” applica-
tions (i.e., no human intervention) it sets
the MASK density to 0.1 — this setting,
which was arrived at empirically, appears
to have some justification in terms of the
results obtained in this paper.

7 Summary

The purpose of this paper (part of a more
comprehensive document in preparation)

was to describe the key ideas and algo-’

rithms comprising one of the three main
functional blocks of a major system for
general-purpose linear delineation being
developed at SRI. Our discussion was
framed in the context of solving an in-
dependently meaningful problem that is
both interesting and difficult; in fact, it
is a problem that challenges the human
visual system. In obtaining a solution to
this problem, we had to compile new data
about the formation of linear structures
in random noise fields — this data has

general utility. In addition to the exper-
iments related to our posed problem, we
show examples of some of the more prac-
tical applications of our complete system.
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9 Appendices

9.1 Generation of Random
Curves

1. Thirty (x,y) pairs are generated
for each curve. Each value of x
and y are generated by a uniform-
distribution (0-1) random-number
generator and then multiplied by
199 to produce numbers (coordinate-
values) uniformly distributed be-
tween 0 and 199.

2. The thirty points are next linked by
a minimal-spanning-tree (MST).

3. A diameter path is extracted from
the MST [1], and the ordered subset
of the original randomly generated
points that fall along this diameter
path are the input sequence provided
to a spline-fitting routine which re-
turns a continuous curve represented
by a sequence of (x,y) coordinate
pairs. These sequences, typically
containing on the order of 300-600
points, are then subjected to a fil-
tering process to produce the desired
density — each point, considered in
turn, is retained if a random num-
ber in the range 0-1 is less than the
desired curve density.

4. Finally, the curves produced as de-
scribed above, are trimmed from
both ends to obtain the desired num-
ber of points for random curves used
in our experiments.

9.2 A Scoring Function

A simple scoring function for compar-
ing the originally embedded and recov-
ered curves would be to count the num-
ber of elements in the (logical) exclusive-
or of the two sets of points. We use

a slightly more complex scoring function
that takes two problems into account:
(1) deletions in the originally embedded
curve can be filled-in by the background
noise field of the RM, and (2) diagonal
sections of the originally embedded curve
can be “fattened” from 8-conmnectivity to
4-connectivity by the background noise
field of the RM. Neither of the above
cases can be detected in a principled man-
ner and should not be counted as er-
rors. To partially compensate for these
problems we permit a one-pixel displace-
ment to be ignored in deciding if points in
the two curves correspond to each other.
Unfortunately, there are still some non-
uniformities in the scoring that are not
completely corrected: (1) lower density
curves have more gaps that can be filled
in a way that looks good to the eye, but
are counted as errors by the scoring func-
tion; and (2) higher density noise fields
tend to produce a greater amount of fat-
tening that does not affect the visual ap-
pearance of a good match, but which
again creates additional mismatches for
the scoring function.

9.3 The Formation of Clusters

in a (Binary) Random Noise
Field

In order to configure and parameterize
our delineation system to solve the prob-
lem posed in this paper, it is necessary
to characterize the structure of the back-
ground noise field (“random mask,” RM)
and the effect the random deletion pro-
cess has on the connectivity of the em-
bedded curve (EC).

In the case of the the RM, we are
primarily concerned with the formation
of random curve segments of sufficient
length and density to either compete with
the EC, or to interact with it. Both
our analysis, and algorithmic extraction
technique, invoke the intermediate struc-
ture we call an n-cluster. A 1-cluster is
a collection of pixels that form a single
connected component (using 8 neighbor




n | RM Density

445
180
.095
.065
.035

[ e U R

Table 2: Minimum values of RM den-
sity for fusion of n-clusters

connectivity) ; an n-cluster is a general-
ization in which every pixel of the clus-
ter has a neighbor in the cluster within
a “checkerboard” distance [5] of n pix-
els: cbdist](z1,y1)(22,y2)] = maz((|zl —-
z2])(|y1 — y2|)]. Efficient methods for
finding n-clusters are known [2].

The number of hierarchical levels, and
the parameterization of our algorithm,
depend on three properties of n-cluster
formation in binary images: (1) how large
can n be, for a given RM density, be-
fore (almost) all the 1-points “fuse” into
a single cluster; (2) what is the distribu-
tion and upper limit on n-cluster sizes for
given values of n and RM density; and
(3) what is the density of a diameter-path
extracted from a random n-cluster. The
enclosed tables (compiled using Monte
Carlo methods) answer these questions
for selected values of the relevant param-
eters.

Table 2 shows that for the range of RM
density values we are primarily concerned
with in this paper, a 3-level (instead of
two) hierarchical recovery strategy is pos-
sible, or for lower values of RM density,
we could use 2/3-clusters instead of 1/2-
clusters. Some of these options are cur-
rently being examined.

Table 3 is of interest in regard to the
design of the scoring function. It shows
the % increase in the number of pixels
when a continuous curve is embedded in
a RM of the specified density, and then
extracted as a 1-cluster.

Table 4 lists the largest values of n-
cluster size (and thus, also on random-

RM-Density | %Accumulation
.05 25
10 40
15 75
.20 125

Table 3: 1-Cluster Growth for Path-

Density = 1

max size of | max size of
1-clusters 2-clusters
RM-Density | (1000 trials) | (1000 trials)
05 10 35
.10 22 162

.15 41

.20 65

Table 4: Upper-limits on the size of
n-clusters

noise-path length) found in 1000 trials for
the specified values of n and RM density.
It presents a crude summary of the design
data available in the series represented by
Table 5.

Table 5 represents one of the primary
predictive tools used for setting the re-
covery algorithm parameters. It specifies
the size distribution of noise 1-clusters
for RM density =.1 Thus, for example, it
shows that eliminating all 1-clusters with
less than 12 pixels will, on average, leave
less than one noise cluster to contend with
in constructing PATHSI1.

Similar tables for other values of RM
density and n = 1,2 have also been con-
structed but are not shown here. For ex-
ample, the table for RM density = .1 and
n = 2 shows that approximately 900 2-
clusters will be formed in a binary mask
with density .1; 90% of the 2-clusters,
containing 50% of the 1-pixels are less
than 10 pixels in size. Thus, eliminat-
ing all 2-clusters containing less than 10
pixels in size (in constructing PATHS2)
will still leave approximately 100 noise




Cluster Prob of | Expected No.
Size | Membership of clusters in
(%) | 200x200 Image

1 43.4113 1736.

2 25.2907 506.

3 14.0122 " 187.

4 7.7993 78.

5 4.2796 34.

6 2.3565 15.71

7 1.2741 7.28

8 .7044 3.52

9 .3964 1.76
10 .2130 .85
11 .1140 41
12 .0633 21
13 .0370 11
14 .0234 .07
15 0116 03
16 .0052 .013
17 .0043 .010
18 .0022 .005
19 .0005 .001
>20 .0011 .002

Table 5: 1-cluster Statistics for RM-
Density = 0.10

clusters to examined and eliminated in
searching for the EC.

The relation between a 2-cluster and
its diameter-path (needed for trimming
“tails” Fig 3) seems to be relatively in-
dependent of RM density for the range
of RM density values between .05 and
0.1 We find that mean path density is
approximately 0.65 with ¢ = .06 Big-
ger 2-clusters have a smaller density vari-
ance, and a smaller ratio of diameter path
length to cluster size: approximately 0.66
for the largest clusters.

9.4 Binary Sequences with Ran-
dom Deletions

The (two-level) hierarchical strategy em-
ployed by our recovery algorithm de-
pends on filtering out most of the noise-

Curve | Length | Gap=0[ Gap=1
Density | Thresh | %Recover | %Recover
.95 8 .94 1.00

10 91 1.00

12 .88 1.00

14 .86 1.00

.90 8 .82 1.00

10 .74 1.00

12 .67 .99

14 .59 .99

.85 8 .70 .99

10 .59 .98

12 AT .98

14 .39 97

.80 8 .50 97

10 .38 .96

12 .28 .93

14 .22 91

Table 6: Curve Recovery Statistics

produced line segments in the first pass
(PATHSI1; Fig 5) while retaining a sig-
nificant percentage of the EC — prefer-
ably (on average) more than 50%. On
the second pass, we want to be capable
of recovering close to 100% of the EC
even though a significant number of noise-
produced line segments are also retained.
Table 6 shows how eliminating n-clusters
(n = 1,2 or gap-length = 0,1) with less
than k elements (k = 8-14) will affect re-
covery statistics. The recovery algorithm
used a length threshold (actually a min-
imum cluster size threshold) of between
10-12 for the formal experiments (Table
1). Note: we have not yet optimized the
recovery algorithm to take full advantage
of the information in the enclosed tables.
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Figure 1: The Linear Delineation System (LDS)



Figure 2: Example of curves embedded in a random noise field:
mask-density /curve-length/curve-density
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Figure 3: Intrinsic problems of line perception and delineation: bridges (which of two
branches is the correct path), and tails (where does the curve end).
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Figure 4: Minimum Spanning Tree (MST) connectivity problems.
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Figure 5: Example of the operation of the Generic Linear Delineation System

(GLDS).
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Figure 6: Example of road delineation.
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Figure 7: Example of road delineation.
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Abstract

Our goal is to reconstruct both the shape and reflectance properties of surfaces from multiple
images. We argue that an object-centered representation is most appropriate for this purpose
because it naturally accommodates multiple sources of data, multiple images (including
motion sequences of a rigid object), and self-occlusions. We then present a specific object-
centered reconstruction method and its implementation. The method begins with an initial
estimate of surface shape provided, for example, by triangulating the result of conventional
stereo. The surface shape and reflectance properties are then iteratively adjusted to minimize
an objective function that combines information from multiple input images. The objective
function is a weighted sum of stereo, shading, and smoothness components, where the weight
varies over the surface. For example, the stereo component is weighted more strongly where
the surface projects onto highly textured areas in the images, and less strongly otherwise.
Thus, each component has its greatest influence where its accuracy is likely to be greatest.
Experimental results on both synthetic and real images are presented.

1 Introduction

The problem of recovering the shape and reflectance properties of a surface from multiple
images has received considerable attention (Barrow and Tenenbaum 1978, Grimson and
Huttenlocher 1992, Marr 1982, Okutomi and Kanade 1991, Terzopoulos 1988). This is a key
problem not only in developing general-purpose vision systems, but also in specialized areas
such as the generation of Digital Elevation Models from aerial images (Barnard 1989, Diehl
and Heipke 1992, Hannah 1989, Kaiser et al. 1992, Wrobel 1991).




In this paper, we view the ultimate goal of a surface reconstruction method as finding an
object-centered description of a surface from a set of input images that is sufficiently com-
plete, in terms of its geometric and radiometric properties, that it is possible to generate an
image of the surface from any viewpoint. In particular, the description should be sufficiently
complete to reproduce the input images to within a certain tolerance, given models of the
cameras, their relative locations, and expected noise.

Our surface reconstruction method uses an object-centered representation, specifically
a triangulated 3-D mesh of vertices. Such a representation accommodates both geometric
and radiometric information, as well as multiple images (including motion sequences of a
rigid object) and self-occlusions. We have chosen to model the surface material using the
Lambertian reflectance model with variable albedo. Consequently, the natural choice for the
monocular information source is shading, while intensity is the natural choice for the image
feature used in multi-image correspondence. Not only are these the natural choices given a
Lambertian reflectance model, they are also complementary (Blake et al. 1985, Leclerc and
Bobick 1991): intensity correlation is most accurate wherever the input images are highly
textured, whereas shading is most accurate where the input images are untextured.

The reconstruction method is to minimize an objective function whose components de-
pend on the input images and some measure of the complexity of the 3-D mesh. The method
starts with an initial estimate for the mesh derived, for example, from the triangulation of
conventional stereo results, and uses conjugate gradient descent to minimize the objective
function. The image-dependent components of the objective function are related to the two
sources of information mentioned above. We take advantage of the complementary nature of
the information sources by weighting the components at each facet of the triangulated mesh
according to the degree of texturing within the areas of the images that the facet projects
to. The projection uses a hidden-surface algorithm to take occlusions into account.

In the following section, we describe related work and our contributions in this area.
Following this we discuss some of the key issues in multi-image surface reconstruction and
how to cofitbine different sources of information for such purposes. We then describe in detail
our specific procedure, discuss its behavior on synthetic data, and show some results on real
images.

2 Related Work and Contributions

Three-dimensional reconstruction of visible surfaces continues to be an important goal of
the computer vision research community. Initially, much of the work concentrated on 2%—D
image-centered reconstructions, such as Barrow and Tenenbaum’s Intrinsic Images (Barrow
and Tenenbaum 1978) and Marr’s 21-D Sketch (Marr 1982). These view-centered surface
representations have been the basis for quite successful systems for recovering shape and
surface properties. Some have used single sources of information, such as sequences of range




data or intensity images (Asada et al. 1992, Hung et al. 1991), stereo (Diehl and Heipke
1992, Kaiser et al. 1992, Witkin et al. 1987, Wrobel 1991), and shading (Hartt and Carlotto
1989, Horn 1990, Terzopoulos 1988). Others have combined sources of information, such as
shading and texture (Choe and Kashyap 1991), focus, vergence, stereo, and camera calibra-
tion (Abbot and Ahuja 1990). See (Aloimonos 1989) for further discussions on information
fusion.

More recently, full 3-D representations have been used, such as 3-D surface meshes
(Terzopoulos and Vasilescu 1991, Vemuri and Malladi 1991), parameterized surfaces (Stokely
and Wu 1992, Lowe 1991), local surfaces (Ferrie et al. 1992, Fua and Sander 1992), particle
systems (Szeliski and Tonnesen 1992), and volumetric models (Pentland 1990, Terzopoulos
and Metaxas 1991, Pentland and Sclaroff 1991).

As with the methods employing 2%—D representations, those employing 3-D represen-
tations have used a variety of single image cues for reconstruction, such as silhouettes and
image features (Cohen et al. 1991, Delingette et al. 1991, Terzopoulos et al. 1987, Tomasi
and Kanade 1992, Wang and Wang 1992), range data (Whaite and Ferrie 1991), stereo (Fua
and Sander 1992), and motion (Szeliski 1991). Liedtke et al. (1991) first uses silhouettes
to derive an initial estimate of the surface, and then uses a multi-image stereo algorithm to
improve on the result. Both their approach to deriving an initial estimate for the mesh and
Szeliski and Tonnesen’s approach (1992) are different from ours and this is an important
topic for future research.

Of specia.l relevance to this paper is research in combining stereo and shape from shading.
Using 2 —D representations, Blake et al. (1985) is the earliest reference we are aware of
that dlscusses the complementary nature of stereo and shape from shading, but meaningful
experimental results are not provided. Leclerc and Bobick (1991) discuss the integration
of stereo and shape from shading, but their implementation uses stereo only as an initial
condition to their height—from—shading algorithm. Cryer et al. (1992) combine the high-
frequency output of a shape from shading algorithm with the low—frequency output of a
stereo algorithm using filters designed to match those in the human visual system.

Using full 3-D representations, Heipke (1992) integrates stereo and shading, but assumes
that the images can be separated beforehand into zones of variable albedo (where one does
stereo) and areas of constant albedo (where one does shape from shading). This is in contrast
to our approach described below, in which the optimization procedure dynamically adapts
to the image data.

In this paper, we unify the idea of using 3-D meshes to integrate information from
multiple images with that of using multiple cues. Our specific approach to this unification
has led to a number of important contributions:

e We correctly deal with occlusions by using a hidden surface algonthm during the
reconstruction process.

e Our stereo technique avoids the constant depth assumption of traditional correlation-
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based stereo algorithms, effectively using self-adjusting variable-sized windows in the
images.

e Our approach to shape from shading is applicable to surfaces with slowly varying
albedo. This is a significant advance over traditional approaches that require constant

albedo.

Finally, we view the specific manner in which the multiple cues are integrated together
to be an important contribution in itself. The integration is achieved by using a weighting
scheme for combining shape from shading and stereo that depends on the local degree of
texturing in the input images. We establish, using both synthetic and real images, that it
leads to significantly better results than using either cue alone.

To demonstrate the validity of the overall approach, we have implemented a computa-
tionally effective optimization procedure, and have demonstrated that it finds good minima
of the objective function on both synthetic and real images.

3 Issues in Multi-Image Surface Reconstruction

We briefly discuss here some of the key issues in multi-image surface reconstructions, and
outline how we address the issues here. These outlines will be expanded upon in Section 4.

3.1 Surface Shape and Its Representation

Since the task is to reconstruct a surface from multiple images whose vantage points may
be very different, we need a surface representation that can be used to generate images
of the surface from arbitrary viewpoints, taking into account self-occlusion, self-shadowing,
and other viewpoint-dependent effects. Clearly, a single image-centered representation is
inadequate for this purpose. Instead, an object-centered surface representation is required.

Many object-centered surface representations are possible. However, practical issues are
important in choosing an appropriate one. First, the representation should be general-
purpose in the sense that it should be possible to represent any continuous surface, closed or
open, and of arbitrary genus. Second, it should be relatively straightforward to generate an
instance of a surface from standard data sets such as depth maps or clouds of points. Finally,
there should be a computationally simple correspondence between the parameters specifying
the surface and the actual 3-D shape of the surface, so that images of the surface can be
easily generated, thereby allowing the integration of information from multiple images.

A regular 3-D triangulation is an example of a surface representation that meets the
criteria stated above, and is the one we have chosen for this paper. In our implementation,
all vertices except those on the edges have six neighbors and are initially regularly spaced.
Such a mesh defines a surface composed of three-sided planar polygons that we call triangular
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facets, or simply facets. Triangular facets are particularly easy to manipulate for image and
shadow generation; consequently they are the basis for many 3-D graphics systems. These
facets tend to form hexagons and can be used to construct virtually arbitrary surfaces.
Finally, standard triangulation algorithms can be used to generate such a surface from noisy

real data (Fua and Sander 1992, Szeliski and Tonnesen 1992).

3.2 Material Properties and Their Representation

Objects in the world are composed of many types of material, and the material type can
vary across the object’s surface in many ways. The key issues, therefore, are the type of
material we wish to consider, and how its variation across the surface is to be represented.
In general, one can represent a material type by its reflectance function, which maps the
wavelength distribution and orientation of a light source, the normal to the surface, and
the viewing direction into the color of the image at a point. This function is generally
quite complex. However, there are reflectance functions that are not only much simpler,
but are also quite common. Such functions are modeled using only one, or, at most, a few,
parameters. Consequently, one can accurately model the material properties of a surface by
representing these parameters at every point on the surface.

Probably the simplest, and most common, such function is the Lambertian reflectance
function. For gray-level images, this function not only has a single parameter, albedo, which
is the ratio of outgoing to incoming light intensity, but the image intensity is independent of
viewpoint. Image intensity can therefore be used directly when computing surface properties,
as explained in Section 4. For this reason, and for the time being, we have chosen to
restrict ourselves to Lambertian surfaces. Possible extensions are discussed as future work
in Section 6.

Having chosen a specific reflectance function, the remaining issue is how to represent the
spatially varying parameter(s). In general, one needs to be able to represent independent
parameter values at every point of the surface. In terms of the mesh representation of the
surface, this implies some type of spatial sampling of each facet. We have chosen to use two
types of spatial sampling. The first is most appropriate when the parameters vary quickly
across the surface, and the second when they vary more slowly. For the former case, we use
a uniform sampling of each facet, where the intersample spacing corresponds roughly to no
more than one or two pixels in any of the images. For the latter case, we use a single value
associated with each facet.

As we shall see later, both representations are necessary to handle the various sources
of information; the relative importance of their contributions is weighted on a facet-by-facet
basis as a function of the images.




3.3 Information Sources for Reconstruction

A number of information sources are available for the reconstruction of a surface and its
material properties. Here, we consider two classes of information.

The first class comprises those information sources that do not require more than one
~ image, such as texture gradients, shading, and occlusion edges. When using multiple images

and a full 3-D surface representation, however, we can do certain things that cannot be done
with a single image. First, the information source can be checked for consistency across all
images, taking occlusions into account. Second, when the source is consistent and occlusions
are taken into account, the information can be fused over all the images, thereby increasing
the accuracy of the reconstruction.

The second class comprises those information sources that require at least two images,
such as the triangulation of corresponding points between input images (given camera models
and their relative positions). Generally speaking, this source is most useful when correspond-
ing points can be easily identified and their image positions accurately measured. The ease
and accuracy of this correspondence can vary significantly from place to place in the image
~set, and depends critically on the type of feature used. Consequently, whatever the type of
feature used, one must be able to identify where in the images that feature provides reliable
correspondences, and what accuracy one can expect.

The image feature that we have chosen for correspondence (although it is by no means the
only one possible) is simply intensity, because the Lambertian reflectance model described
earlier implies that the image intensity of a surface point is independent of the viewing
direction. Therefore, corresponding points should have the same intensity in all images.
Clearly, intensity can be a reliable feature only when the albedo varies quickly enough on
the surface (and, consequently, the images are highly textured), the search space is sufficiently
narrow, and the radiometry is the same in all images. Otherwise, there would be significant
ambiguity in the correspondence of pixels across the images. Diflerences in radiometry,
however, can be accommodated by first band-passing the images (Poggio et al. 1985, Barnard
1989).

In contrast to our approach, traditional correlation-based stereo methods use fixed-size
windows in images to measure disparities, which will in general yield correct results only
when the surface is parallel to the image plane. Instead, we compare the intensities as
projected onto the facets of the surface. Consequently, the reconstruction can be significantly
more accurate for slanted surfaces. Some correlation-based algorithms achieve similar results
by using variable-shaped windows in the images. Control Data’s work (Panton 1978), the
Hierarchical Warp Stereo System (Quam 1984), Nishihara’s real-time stereo matcher (1984),
and the adaptative windows technique described in (Kanade and Okutomi 1990) are examples
of such methods. However, they typically use only image-centered representations of the

surface.
As for the monocular information source, we have chosen to use shading. There are a




number of reasons for this. First, we are using a Lambertian reflectance model, making
shading a relatively simple source of information. Second, shading is most reliable when the
albedo varies slowly across the surface, which is the natural complement to intensity corre-
spondence, which requires quickly varying albedo. The complementary nature of these two
sources should allow us to accurately recover the surface geometry and material properties
for a wide variety of images. )

In contrast to our approach, traditional uses of shading information assume that the
albedo is constant across the entire surface, which is a major limitation when applied to real
images. We overcome this limitation by improving upon a method to deal with discontinu-
ities in albedo alluded to in the summary of (Leclerc and Bobick 1991). We compute the
albedo at each facet using the normal to the facet, a light-source direction, and the aver-
age of the intensities projected onto the facet from all images. We use the local variation
of this computed albedo across the surface as a measure of the correctness of the surface
reconstruction. To see why albedo variation is a reasonable measure of correctness, consider
the case when the albedo of the real surface is constant. When the geometry of the mesh
is correct, then the computed albedo should be approximately the same as the real albedo,
and hence should be approximately constant across the mesh. Thus, when the geometry is
incorrect, this will generally give rise to variations in the computed albedo that we can take
advantage of. Furthermore, by using a local variation in the computed albedo, we can deal
with surfaces whose albedo is not constant, but instead varies slowly over the surface.

3.4 Combining and Using Information Sources

Simply put, our approach to surface reconstruction is to adjust the parameters of the surface
(in the case of the mesh, this means the coordinates of the vertices), until the synthesized
images of the surface are most consistent with the information sources described above.
This approach requires a number of things. First, one must have an initial estimate of
the surface. Second, one must know the light source direction, camera models, and their
relative positions—we assume these are provided a priori—so that synthetic images of the
surface can be generated. Third, one must have a way of quantifying what is meant by
“most consistent with the information sources.” Here, we use an objective function that
is a linear combination of components, one for each information source, whose weights are
determined on a facet-by-facet basis as a function of the images. Finally, one must have
a computationally effective means of finding a surface, given the initial estimate, that is
reasonably close to the best of all possible surfaces according to the objective function.
Our combined objective function has three components, two of which were mentioned
above: an intensity correlation component, and an albedo variation component. A third
component is a measure of the smoothness of the surface. The first two components are
weighted differently at each facet as a function of the image intensities projected onto the
facet, while the surface smoothness component has the same weight everywhere, but is
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typically decreased as the iterations proceed.

Since the intensity correlation component depends on the differences in image intensities
at a given point on a facet, it is most accurate when the images are highly textured in
the areas that the facet projects to. To see this, consider the case when the images have
constant intensity in the neighborhood of the projected facet: the difference in intensity will
be a constant, independent of small variations in the facet’s position or orientation. On the
other hand, when the images are highly textured, small changes in the facet can significantly
change the value of this component. Thus, we weight the intensity correlation component
most strongly for those facets in which the projected image intensities are highly textured.

Conversely, the albedo variation component is most accurate when the intensities within a
facet vary slowly. This is because we are assuming that the albedo varies slowly enough across
the surface that a constant-albedo facet is a good model for the surface. Since the facets
are planar, this should produce images whose intensities are constant within the projected
facet. Thus, we weight the albedo variation component most strongly when the projected
intensities within a facet vary slowly.

Since rapidly changing albedos produce highly textured image regions, our weighting
scheme, in effect, turns off the shading component and turns on the stereo component in
such regions. Thus, it provides the shape from shading component with boundary conditions
at the edge of regions of slowly varying albedo.

The surface smoothness component is required as a stabilizing term because neither of
the above components is likely to be exactly correct, the surfaces are not exactly Lambertian,
and the camera positions are not exactly correct: there is noise in the images, and so on.
Currently, we use the heuristic technique of starting with a relatively large weight for the
smoothness component, and decrease it as the iterations proceed. The theoretically optimal
point at which the smoothness weight should no longer be decreased is still an open question.
Nonetheless, a single empirically determined value has been used with great success across
all of the images presented in this paper when simultaneously using stereo and shape from

shading.

4 Details of Surface Model and Optimization Proce-
dure

As discussed in the previous section, our approach to recovering surface shape and reflectance
properties from multiple images is to deform a 3-D representation of the surface so as
to minimize an objective function. The free variables of this objective function are the
coordinates of the vertices of the mesh representing the surface, and the process is started
with an initial estimate of the surface. For the experiments described in this paper, we
have derived this initial estimate using one of the various methods mentioned in Section 5.



The simplest one is to triangulate the smooth depth-map generated by the correlation-based
stereo algorithm described in (Fua 1993).

4.1 Images and Camera Models

In this paper, we assume that images are monochrome, and that their camera models are
known a priori. The set of gray-level images is denoted G = (91,92, -, 9n,)- A point in an
image is denoted u = (u,v), and the intensity of point u in image g; is denoted g;(u). For
noninteger values of u we use bilinear interpolation over the four points represented by the
floor and ceiling of the coordinates of u.

The projection of an arbitrary point x = (z,y,z) in space into image g; is denoted
m;(x). There are well-known methods for correcting both geometric and radiometric errors
in images, as surveyed in (Baltsavias 1991). Thus, we assume that all effects of lens distortion
and the like have been taken care of in producing the input images, so that the projection
of a surface into an image is well modeled by a perspective projection. Thus, u = m;(x) can
be written as:

M;

¥I<<
I
— N R

u = UW
ViW,

where M; is a three-by-four projection matrix.

4.2 Surface Representation

We represent a surface S by a hexagonally connected set of vertices V = (v1,v2,...,?s,)
called a mesh. The position of vertex v; is specified by its Cartesian coordinates (z,95,25)-
Fach vertex in the interior of the surface has exactly six neighbors. Vertices on the edge of
a surface may have anywhere from two to five neighbors.

Neighboring vertices are further organized into triangular planar surface elements called
facets, denoted F = (f1, f2,..., fn,). In this work, we require that the initial estimate of the
surface have facets whose sides are of equal length. The objective function described below
tends to maintain this equality, but does not strictly enforce it. The representation can be
extended in a straight-forward fashion to support different surface resolutions by subdividing
facets (which we have done but do not describe in detail here). However, facets of a given
resolution will still be required to have approximately equal sides.
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4.3 Objective Function

The objective function £(S) that we use to recover the surface is best described in two
equations. In the first equation,

£(S) = ApEp(S) + £4(S), 1)

E(S) is decomposed into a linear combination of two components. The first component,
Ep(S), is a measure of the deformation of the surface from a nominal shape, and is indepen-
dent of the images. This nominal shape represents the shape that the surface would take in
the absence of any information from the images. For this paper, it is a plane. Higher-order
measures, such as deformation from a sphere, are also possible.

The second component,

SG(S) = /\cgc(S) + Asgs(S) (2)

depends on the images, and is the one that drives the reconstruction process. It is further
decomposed into a linear combination of the two information sources described in the pre-
vious section: a multi-image correlation component, £¢(S), and a component that depends
on the shading of the surface, £s(S).

These components, and their relative weights, are described in more detail below.

4.3.1 Surface Deformation Component

As stated earlier, the surface deformation (or smoothness) component is a measure of the
deviation of the mesh surface from some nominal smooth shape. When the nominal shape
is a plane, we can approximate this as follows.

Consider a perfectly planar hexagonal mesh for which the distances between neighboring
vertices are exactly equal. Let the neighbors of a vertex v; be ordered in clockwise fashion
and let us denote them vy,(;) for 1 < j < 6. This notation is depicted in Figure 1(a). If the
hexagonal mesh was perfectly planar, then the third neighbor over from the j** neighbor,
UN;(j+3), would lie on a straight line with v; and vy,(;). Given that the intervertex distances
are equal, this implies that coordinates of v; equal the average of the coordinates of vy,
and vy;(j43), for any j.

Given the above, we can write a measure of the deviation of the mesh from a plane as
follows:

ny 3
Ep(S) = Y Y Qui—zi—ze)+ (Qui—vk— )’ + (22 — 2 — )’
=1 j=1
k=N;(7)
k'=N;(543)
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Figure 1: (a) The six neighbors N;(7) of a vertex v; are ordered clockwise. The defor-
mation component of the objective function tends to minimize the distance
between v; and the midpoint of diametrally opposed neighbors, represented by
the dotted circle. (b) Facets are sampled at regular intervals as illustrated here.
We use the gray levels of the projections of these sample points to compute the
stereo score. (c) The albedo of each facet is estimated using the facet normal

ﬁ, the light source direction L and the average gray level of the projection
of the facet into the images.

Note that this term is also equivalent to the squared directional curvature of the surface
when the sides have approximately equal lengths (Kass et al. 1988). This term can be made
to accommodate multiple resolutions of facets by normalizing each term by the nominal
intervertex spacing of the facets.

4.3.2 Multi-Image Intensity Correlation

The multi-image intensity correlation component is the sum of squared differences in intensity
from all the images at a given sample-point on a facet, summed over all sample-points, and
summed over all facets. This component is presented in stages in the remainder of this
subsection.

First, we define the sample-points of a facet by noting that all points on a triangular
facet are a convex combination of its vertices. Thus, we can define the sample-points x;,; of
facet fi as:

Xed = M1Xe1+ M2Xe2 + MN3Xes, [ =4,...n,,

where Xj 1, Xk 2, and X; 3 are the coordinates of the vertices of facet fi, and A1 +A2+Ai3 = 1.
In practice, A\;; and A2 are both picked at regular intervals in [0,1] and A3 is taken to be
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1 — A1 — A2. In the top half of Figure 1(b), we see an example of the sample-points of a
facet.

Next, we develop the sum of squared differences in intensity from all images for a given
point x. Recall that a point x in space is projected into a point u in image g¢; via the
perspective transformation u = m;(x). Consequently, the sum of squared differences in
intensity from all the images, 0'*(x), is defined by:

W) = 230 g(mi(x)

t =1
12 1 & ' 2
otx) = - El (g:(mi(x)) — p'(x))
Figure 1(b) illustrates the projection of a sample-point of a facet onto several images.

The above definition of 0'*(x) does not take into account occlusions of the surface. To
do so, we use a “Facet-ID” image, shown in Figure 2. It is generated by encoding the index
1 of each facet f; as a unique color, and projecting the surface into the image plane, using
a standard hidden-surface algorithm. Thus, when a sample-point from facet fi is projected
into an image, the index k is compared to the index stored in the Facet-ID image at that
point. If they are the same, then the sample-point is visible in that image; otherwise, it
is not. Let v;(x) = 1 when point x is determined to be visible in image g; by the method
above, and v;(x) = 0 otherwise. Then, the correct form for the sum of squared differences
in intensity at a point x is defined by:

_ X vi(x)gi(mi(x))
K = e )
2 R vi(x) (g(mi(x)) — p(x))?
o (x) Y vi(x)

When the sample-point is visible in fewer than two images (that is, when Y7, vi(x) < 2),
the above variance has no meaning and is taken to be 0. Let s, denote the number of facet
samples for facet k for which the variance is meaningful. Summing o?(x) over all sample-
points and over all facets and normalizing by the number of meaningful sample-points yields
the multi-image intensity correlation component:

Eo(S) = kLs ck %?:’4 (k)

k=1 Sk

where ¢, is a number between 0 and 1 that weights the contribution from each facet differ-
ently, depending on the average degree of texturing within a facet (see Section 4.3.4).
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Figure 2: Illustration of the projection of a mesh, and the “Facet-ID” image used to
accommodate occlusions during surface reconstruction. (a) A shaded image of
a mesh. (b) A wire-frame representation of the mesh (bold white lines) and
the sample-points in each facet (interior white points). (c¢) The “Facet-ID”
image, wherein the color at a pixel is chosen to uniquely identify the visible
facet at that point (shown here as a gray-level image).

When the original surface giving rise to the images is sufficiently textured, this component
should be smallest when the surface S closely approximates the original surface. However,
when the surface has constant, or nearly constant, albedo this component would be small for
many different surfaces. As an extreme example of this ambiguity, consider a planar surface
with constant albedo. This produces images with constant intensity. Thus, this component
will not be able to constrain the shape of the surface, since the difference in intensity will
be zero for all surfaces.

4.3.3 Shading

The shading component of the objective function is the sum, over all facets, of the difference
between the computed albedo of the facet and the computed albedos of all of its neighbors.
The motivation for this component, and its precise form, follow.

Recall that the Lambertian reflectance model defines the intensity g at a point on a

surface with a unit surface normal 7\? as:

g=ala+bN - T), 3)
where « is the albedo of the surface, a is the magnitude of the ambient light, b is the

magnitude of a point light source, and L is the direction of the point light source as depicted
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in Figure 1(c).

Note that g is independent of the viewing direction. Consequently, if we were to image a
planar Lambertian facet from several points of view, its intensity would be the same for all
pixels in the projection of the facet. Conversely, if we were to measure the average intensity
Gx of all of the pixels within the projection of a facet fi, we could compute its albedo, a4,
as follows:

Gk
o= —F 4
T @4bN- 1) “

This assumes, of course, that the facet is well-modeled by a single albedo, that the variation
in intensity is due only to noise, and that the light source is located at infinity. In this paper,

we assume that the ambient and direct illumination (i.e., a, b, and f) are either given or
estimated from the initial surface and images, as was done in (Leclerc and Bobick 1991).

The average intensity gi of a facet is computed by scanning over all the Facet-ID images
for index k, and taking the average of the intensities at matching points in the corresponding
images. This computed albedo minimizes the mean squared error between the synthesized
images of the mesh surface and the input images. ~

Now, if the original surface had exactly constant albedo, and if our mesh surface were a
good approximation to the original surface, then the computed albedos should be approxi-
mately the same across all facets. Thus, some measure of the variation in computed albedos
would be a good measure of the correctness of the mesh surface. If the albedo varies slowly
across the surface, we propose that an appropriate measure of this variation is the difference
between the computed albedo at the facet and the computed albedos of all its neighboring
facets:

£5(8) = S-c) ¥ (g —ay)
k=1 FEN{ (k)

where N (k) is the set of indices of the facets that are neighbors of facet f, and ¢; and c;
are numbers between 0 and 1 that depend on the degree of texturing within facets f; and
fi-

This term can be exactly zero only where the albedo is constant. However, as will be
shown in Section 5, it provides a reasonable constraint on the variation of surface normals
when the albedo variation is slow. It constrains the normals of neighboring facets projecting
to areas of similar gray-levels to have similar orientations. As a result, it prevents the surface
normals from varying wildly in the absence of strong image gray-level variations and acts as
an image-dependent regularization term that prevents the surface from wrinkling in bland
areas.
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4.3.4 Combining the Components

Recall that the objective function £(S) is a linear combination of three components:

E(S) = Apép(S)+ Ac€c(S) + As€s(S),

where the last two components are themselves linear combinations of subcomponents com-
puted on a per-facet basis:

£5(S) = (}: g;az(xk,z))/ >:

£(8) = Y(-c) 5 (1—e;)(on— ). %)
k=1 FEN;(K)

Thus, one needs to specify both the As, defining the relative weights of the components, and
the cis, defining the relative weights of the two image-based components for each facet.
The X\ weights are defined as follows:

A

A = —B2—o
| Ven(s0) |

o = —2e (6)
| VEa(8°) |

Ag = As

| Ves(so) ||

where S° is the initial estimate of the surface, and the \'s are user-defined weights. Normal-
izing each component by the magnitude of its initial gradient allows the components to have
roughly the same influence when the A's are equal. Thus, the user can more easily specify
the relative contributions of each component in an image-independent fashion. This normal-
ization scheme was used with great success in (Fua and Leclerc 1990), and is analogous to
standard constrained optimization techniques in which the various constraints are scaled so
that their eigenvalues have comparable magnitudes (Luenberger 1984).

As mentioned earlier, the c¢; weights are a function of the degree of texturing in the
intensities projected within a facet fi. A simple measure of the degree of texturing within
a facet is the variance in intensity of all the pixels projecting onto the facet, denoted o4(S)
(using the Facet-ID image to accommodate occlusions). We have empirically determined
that using the logarithm of o4(S) yields the most stable results for a large set of images:

15



cr = alog (14 ox(S)) + b, (7)

where a and b are normalizing factors chosen so that the smallest ¢; is zero, and the largest
is one.

4.4 The Optimization Procedure

The purpose of the optimization procedure is to iteratively modify the surface S so as to
minimize £(S), given some initial estimate $°, and some value for the weights X5, A, and
A}, (where Xg + M5 + A = 1) defined in Equation 6. Ideally, one would like to use as small a
value of the deformation weight A\, as possible so as to minimize the bias introduced by this
term. However, in practice, A}, serves a dual purpose. First, since the surface deformation
term is a quadratic function of the vertex coordinates, it “convexifies” the energy landscape
and improves the convergence properties of the optimization procedure. Second, as discussed
above and shown in Section 5, in the absence of a smoothing term, the objective function
may overfit the data and wrinkle the surface excessively. Furthermore, the c; weights of
Equations 5 and 7 are computed for the initial position of the mesh and are meaningful only
when it is relatively close to the actual surface.

Consequently, we use an optimization method that is inspired by the heuristic technique
known as a continuation method (Terzopoulos 1986, Leclerc 1989a, Leclerc 1989b, Leclerc
and Bobick 1991). We first “turn off” the shading term by setting A (Equation 6) to 0 and
setting A}, to a value that is large enough to sufficiently convexify the energy landscape but
small enough to allow curvature in the surface. In this paper, we take the initial value of both
X, and A, to be 0.5. Given the initial estimate S°, a local minimum of this approximate
objective function is found, using a standard optimization procedure. Then, A}, is decreased
slightly, and the optimization procedure is applied again, starting at the local minimum
found for the previous approximation. This cycle is repeated until A}, is decreased to the
desired value. Finally we “turn on” the shading term, compute the c; weights and reoptimize.
In all examples shown in Section 5, we use My = Ay = 0.4 and A, = 0.2 for this final stage.

The stereo component effectively uses only zeroth-order information about the surface
(i.e., the position of the vertices), whereas shading uses first-order information about the
surface (i.e., its normals). Thus, by optimizing the stereo component first, we effectively
compute the zeroth-order properties of the surface and set up boundary conditions that
the shading component can then use to compute the first-order properties of the surface in
textureless regions. In Section 5, we will show that this leads to a significant improvement
over using the stereo component alone.

When dealing with surfaces for which motion in one direction leads to more dramatic
changes than motions in others, as is typically the case with the z direction in Digital
Elevation Models (DEMs), we have found the following heuristic to be useful. We first fix
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the z and y coordinates of vertices and adjust z alone. Once the surface has been optimized,
we then allow all of the coordinates to vary simultaneously.

The optimization procedure we use at every stage is a standard conjugate-gradient descent
procedure called FRPRMN (from (Press et al. 1986)) in conjunction with a simple line-
search algorithm. The conjugate-gradient procedure requires three inputs: (1) a function
that returns the value of the objective function for any S; (2) a function that returns the
gradient of £(S), that is, a vector whose elements are the partial derivatives of £(S) with
respect to the vertex coordinates, evaluated at S; and (3) an initial estimate S°.

Since it would be significantly slower to compute the gradient of £(S) using finite dif-
ferences than analytically, we do the latter. The analytical expression of this gradient is
conceptually straightforward, but is fairly complicated to derive manually. We have used
the Maple ! mathematical package to derive some of the terms. Maple directly yields the C
code used in our implementation. We summarize the calculation of the derivatives below in
general terms.

The derivatives of the stereo term are linear combinations of image intensity derivatives
and of derivatives of the 3-D projections of points onto the images. Since we use bilinear-
interpolation of image values, the first derivatives of image intensity are linear combinations
of the image intensities in the immediate neighborhood of the projection. Since sample-
points are linear combinations in projective space of the mesh vertices, their projections are
ratios of linear combinations of the projections of the vertices, which themselves depend
linearly on the vertex coordinates. Consequently, the derivatives of these projections are
ratios of linear combinations of the vertex coordinates and squares of linear combinations of
the vertex coordinates.

Similarly, the derivatives of the shading term depend on the derivatives of the surface
normal, which can be easily derived analytically, and from the derivative of the mean gray-
level in the facets. In this work, the shading term is used mainly in the fairly uniform areas
where the latter derivative is assumed to be small and therefore neglected.

4.5 Computational Complexity and Convergence Issues

Each iteration of the conjugate gradient algorithm typically involves one evaluation of the
gradient of the objective function and four to eight evaluations of the objective function
itself. The cost of evaluating the stereo term grows as the product of the number of facets,
the number of samples per facet, and the number of images. Because the albedo computation
involves scanning the Facet-ID image, the dominant cost of evaluating the albedo term grows
as the number of pixels per image times the number of images. The cost of evaluating the
deformation term grows as the number of vertices and is small by comparison with the other
two. For example, in the case of the face images shown in Subsection 5.2.2, the meshes have

!Trademark, Waterloo Maple Software
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approximately 800 vertices and 1500 facets. We use six samples per facet and three 128x200
images. It takes about 0.6 second to evaluate the stereo energy, 0.3 second to evaluate the
albedo energy and .01 second to compute the deformation energy on an R4000 SGI Indigo.
Each iteration therefore takes from 5 to 10 seconds, and the computation of the final results
shown in this paper took a little less than 10 minutes.

Since the optimization uses image derivatives, our technique is valid only if a majority
of the facet samples project to within a few pixels of where they should be; otherwise the
gradient of the objective function is meaningless and the algorithm cannot converge. This
problem can be alleviated by using a coarse mesh applied to a coarse level of a gaussian
pyramid, and progressively increasing the resolutions of both mesh and images. Proving the
convergence of the algorithm in the general case is beyond the scope of the paper. However,
in Section 5, we use both synthetic and real world examples to show that the algorithm
converges when the condition stated above holds, that is, when the initial estimate is good
enough for the vertices of the mesh to project to within a few pixels of their true locations.

Standard correlation-based techniques can provide starting points that have the required
properties. For example, the specific algorithm we use in this paper (Fua 1993) has been
shown to find few false matches and to yield a precision in the order of one pixel in disparity
in the areas where it finds relatively dense matches.

5 Behavior of the Objective Function and Results

We first illustrate the behavior of the complete objective function using synthetic data. We
then show that the same behavior can be observed with real data, allowing us to generate
accurate 3-D reconstructions of real surfaces from multiple images.

5.1 Synthetic Data

To demonstrate the properties of the objective function of Equation 1 and the influence of
the coefficients defined in Equations 6 and 7, we use as input the five synthetic images of
a shaded hemisphere with variable albedo shown at the bottom of Figure 3, both with and
without the addition of white noise. Each column of the figure illustrates the steps used in
the creation of the image at the bottom of the column. We begin with a mesh and an albedo
map, shown in the top row. Then, for each view, two images are produced. The first image
(second row of the figure) is the albedo map texture-mapped onto the mesh from the final
image’s point of view. The second image (third row of the figure) is a shaded view of the
mesh, using a constant albedo equal to one. The final image is the point-by-point product
of these two images because, by Equation 3, the imaged intensity of a Lambertian surface
is the product of the albedo (first image) and the inner product of the light source and the
surface normal (second image). ‘
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Figure 3: The making of synthetic images of a shaded hemisphere with variable albedo
that conforms to our Lambertian model.

Figure 4 depicts graphically the result of our experiments. In each experiment we ran-
domized the mesh by adding random numbers to the coordinates of the mesh vertices, and
added different amounts of noise to the input images. We then used our optimization proce-
dure to estimate the true hemispherical shape and true albedo map. More precisely, starting
from our randomized initial estimate, we first use intensity correlation alone and progres-
sively decrease the value of the A parameter of Equation 6 from 0.5 to 0. We then turn
on the shading term by setting both A}, and A to 0.4, compute the cs of Equation 7, and
optimize the full objective function. To show the stability of the process, we recompute the
cis for the optimized mesh and perform a second optimization using the updated values.

The first column of Figure 4 is for experiments using only the first, second, and third im-
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Graphs of the errors and objective function components while fitting a surface model
to the synthetic shaded hemisphere images of Figure 3. These graphs are explained
in detail in the text. (a,b,c) Average error in recovered elevation expressed in the
same unit as the radius of the hemisphere, which is equal to 35. (d,ef) Average
error in recovered albedo. (g,h,i) £¢, the stereo component of the energy. (j,k,1) &s,
the shading component of the energy.

ages from Figure 3, where there is little self-occlusion. The second column is for experiments
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using the first, fourth, and fifth images, where there is a significant amount of self-occlusion.
Finally, the third column is for experiments using all five images. In this particular set of
experiments, we allowed only the z coordinates of the vertices to vary. We also fixed the
boundary vertices so as to eliminate the effect of the gray-level discontinuities at the border
between the texture mapped part of the images and their black background .

The first row from the top of Figure 4 is a graph of the average squared error in elevation
(the ordinate) versus decreasing A}, (the abscissa). To the left of the dotted vertical line,
only the intensity correlation component is used. To the right, both the intensity correlation
and shading components are used. The different curves are for different amounts of noise
in the input images. The bottom curve corresponds to no noise (other than quantization
error), the middle curve is for a noise variance of 4% of the image dynamic range, and the
top curve is for a noise variance of 8%. The short vertical lines along the curves indicate the
standard deviation of the average error over the 20 experiments performed to derive each
curve.

Note that an error of 1 unit in elevation corresponds to a difference in computed dis-
parities of approximately 0.25 pixels for projections from image 1 into images 2 or 3 and of
approximately 0.80 pixels for projections from image 1 into images 4 or 5. In these experi-
ments, the noise added to the elevations was gaussian of variance randomly chosen between
1 and 5, resulting in errors in the projections in the order of one pixel for images 2 and 3,
and of three pixels for images 4 and 5. In this particular case, however, much larger errors
can be tolerated: the hemisphere has a radius of 35 elevation units and can be recovered
starting from a flat sheet.

The second row of Figure 4 is a graph of the average error in computed albedo. The
third row is the average value of the intensity correlation component, £¢(S), and the fourth
row is the average value of the shading component, £5(S).

Note that, as A}, decreases and stereo alone is used (i.e., as the abscissa is traversed
rightwards to the dotted vertical line), the average elevation error decreases when there is
no noise in the input image (bottom curve), as does the average albedo error and the two
components of the objective function. However, when the images are noisy, the elevation
error (first row) stops decreasing and may even begin to increase as we start fitting to the
gray-level noise, even though the value of the intensity correlation component (third row)
continues to decrease, as it must. Furthermore, both the albedo error (second row) and the
shading component (fourth row) also begin to increase when the elevation error does. This
is natural since for smaller values of A}, the surface becomes rougher and its normals less
well-behaved. As a result, the estimated albedos of Equation 4 become less reliable and
noisier.

In other words, an increase in the shading component provides us with a warning that
we are starting to overfit the data. This is a valuable behavior in itself. Furthermore, by
turning on the shading component of our objective function (those parts of the graphs that
are to the right of the vertical dotted line), we can bring down both the error in albedo

21




and the value of the albedo component with at worst a modest increase in the value of the
stereo component, resulting in an overall reduction of the elevation error. Even when there
is nothing but quantization noise in the image, the addition of the shading component can
make a small, but still noticeable difference. The reason for this is twofold:

1. The shading component averages over whole facets and is therefore less sensitive to
uncorrelated noise.

2. The shading component uses absolute intensity values, whereas the stereo component
uses intensity differences. Thus, in the presence of noise in textureless areas, the signal-
to-noise ratio for the absolute values (used by the shading component) is larger than
for the differences (used by the stereo component), thereby making the shading term
more robust.

However, in our experience, the shading term can be used reliably only when the surface
is relatively close to the correct answer. This is not surprising since stereo deals directly
with elevations, whereas shading deals with derivatives of elevation. Consequently, we have
chosen the optimization schedule described above where we first optimize using stereo alone
and turn on shading only later.

There is another important point to note about these results. The elevation errors in
the second column, that is, those generated using images 1, 4, and 5 with a lot of self-
occlusion are very close to those of the first column, that is those generated using images 1,
2, and 3 with little self-occlusion, while those in the final column (using all five images) are
significantly better. In addition, the results for images 1,4, and 5 are even slightly better
than those for images 1,2, and 3 in the presence of noise because the former correspond to
larger baselines. In other words, having the same number of images, but with significant
self-occlusions, does not hurt our procedure. Furthermore, adding new images that contain
significant self-occlusions actually improves the results.

To further demonstrate the importance of being able to combine stereo and shape from
shading, even in the presence of slowly varying albedo, we present in Figure 5 a second
synthetic example. If we band-pass the images using a difference of gaussians, there is not
enough texture for stereo to work effectively and the surface computed using stereo alone is
not very good. However by combining shape-from-shading with stereo, the result improves
markedly and the recovered surface becomes very close to the synthetic one used to generate
the images. In this case our starting point was a flat plane, corresponding to errors of up to
4 pixels in the initial projections of the mesh vertices.
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Figure 5: Combining shape from shading and stereo in the presence of a slowly varying
albedo. (a,b) A synthetic stereo pair generated by rendering the shaded surface
shown in (c) using the albedo map shown in (d). (e) The original shaded
surface and albedo map from (c) and (d) seen from the side. (f) The surface
and albedo map computed using stereo alone on difference of gaussians of the
images and starting from a plane. (g) The surface and albedo map recovered by
combining shape from shading and stereo. The difference-of-gaussian images
do not retain enough information and stereo alone finds a poor quality solution.
The shape-from-shading term, however, allows a better recovery of the surface
even though the albedo is not constant.

5.2 Real Images

We now turn to real images and show that the same properties can be observed there.

5.2.1 Aerial Images

In Figure 6 we show the result of running the stereo component of our objective function on
an aerial stereo pair of a sharp ridge. Note that the radiometry of the left and right images is
actually slightly different. As suggested in Section 3.3, we correct for this in the computation
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Figure 6: (a,b) A stereo pair of images of the Martin-Marietta ALV test site. (c) Dis-

parity map computed using a correlation-based algorithm. The black areas
indicate that the stereo algorithm could not find a match. Elsewhere, lighter
grays indicate higher elevations. (d) The initial surface estimate derived by
smoothing and interpolation of the disparity map. It is shown as a shaded
surface viewed by an observer located above the upper left corner of the scene.
(e,f) Shaded views of the mesh after optimization. Note that the ridge has
become very sharp and that the shadow casting cliffs visible in the top portion
of the image are recovered. They are clearly visible at the top of (e) and the

bottom right corner of ().

of the stereo term of our objective function by first high-pass filtering each image. Here, we
use the difference between the image and its gaussian convolution.
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We then optimize the mesh using the continuation method schedule described in section
4.4, that is, starting with A\ = Ay = 0.5, A5 = 0.0 and then progressively reducing Aj to
0.3 and increasing A to 0.7. Note that the recovered ridge is much sharper than in the
original stereo result and that details in the upper part of the image are well recovered. The
difference in the ridge elevation in the original and final estimate is approximately 40 feet,
which translates to 2 pixels in disparity. Turning on the shape-from-shading term yields a
result that is visually indistinguishable from the one shown here: the images are textured
enough for stereo alone to be effective.

(d)

Figure 7: (a) (b) Two of a series of images of a semi-urban site. The images were taken
with different light source directions. (c) A rough estimate of the ground-level
surface (d) Surface after optimization using stereo alone. (e) Surface after
optimization using both stereo and hand-entered buildings to mask occluded
areas. (e) Surface after optimization using both stereo and shape from shading.
In this case, the illuminations of the different images are different and there are
very few bland, untextured areas. As a result, stereo alone performs better.

In Figure 7, we demonstrate a possible application of our technique to semiautomated
cartography in a semiurban environment. We use images of a model board, each of them
being taken with a different light-source direction. By fitting 3-D snakes to some of the
roads in the scene and fitting a surface to them, we have generated a rough terrain model
that we have then optimized using the same schedule as before. Because of the presence of
buildings that cannot be well described by our mesh model and even though we use relatively
large facets, the resulting surface model is too bumpy. We can improve upon this situation
by manually specifying the locations of the buildings, modeling them as extruded objects,
and using them to mask out occluded areas during the optimization. For comparison’s sake,
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we also show the result of simultaneously using stereo and shape from shading. In this case,
because the illumination in each image is different and there are very few bland areas, the
shape-from-shading term actually degrades the result.

5.2.2 Face Images

In Figure 8 we show two triplets of images of faces. They have been produced using the
INRIA three-camera system (Faugeras and Toscani 1986) that provides us with the camera
models we need to perform our computations. In this case it is essential to have more than
two images to be able to reconstruct both sides of the face because of self-occlusions. For each
triplet, we have computed disparity maps corresponding to images 1 and 2 and to images 1
and 3 and combined them to produce the depth maps shown in the rightmost column of the
figure using the algorithms described in (Fua 1993).

&8

Disparities

Triplet

Figure 8: Triplets of face images and corresponding disparity maps (courtesy of INRIA).
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Figure 9: Results for the first triplet of Figure 8. (a) Shaded view of the mesh generated
by smoothing and triangulating the computed disparity map. We use it as
the starting condition for our optimization procedure. (b,c,d) The mesh after
optimization using only the stereo term, with progressively less smoothing.
(e,f,g) Several views of the mesh after optimization using both stereo and
shading. (h) The recovered albedo map. The albedo of the nose appears fairly
similar to that of the other skin areas, showing that its geometry has been
well recovered. The main problem with this map is the dark streak caused
by the self-shadowing crease on the right side of the face. Our algorithm does
not currently handle shadows and incorrectly models them as areas of lower

albedo.

The depth maps have then been smoothed and triangulated to produce the initial surfaces
shown in the upper left corner of Figures 9 and 10. In the first row of these two figures,
we show the result of the optimization using stereo alone as we progressively decrease the
smoothness constraint and allow all three vertex coordinates to be adjusted. Note that in
the first triplet (Figure 9), we recover more and more detail until the surface eventually
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Figure 10: Results for the second triplet of Figure 8 presented in the same fashion as in
Figure 9. There are strong specularities on the nose and the stereo term alone
performs poorly. However, by using the shading term, the algorithm takes
advantage of the monocular information present around the specularities and
yields a much better result.

starts to wrinkle, without apparent improvement in accuracy. The second triplet poses an
even more difficult problem: there are strong specularities on both the forehead and the
nose that strongly violate our Lambertian model. Because there are very few other points
that can be matched on the nose, the algorithm latches on to these specularities and yields
a poor result. These two sets of images therefore present our algorithm with problems that
are very similar to those discussed in Section 5.1.

In the bottom row of Figures 9 and 10, we show our final results obtained by turning
on the shading term and reoptimizing the meshes. In Figure 12, we show the corresponding
values of the c; coefficients of Equation 7 and the contribution of each facet to the overall
energy. For these images we did not know a prior: the light-source direction; we therefore
estimated it by choosing the direction that minimized the shading component of the objective
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Figure 11: Values of the stereo (a) and shading (b) components of the objective function
for the face images. The y axis represents the value of the components, and
the x axis represents the various stages of the optimization. From left to right,
we first use only stereo and decrease the smoothness and, to the right of the
thick dotted line, we turn on the shading term. Each curve is labeled with the
number of the corresponding image triplet, and all values have been scaled so
that the initial ones are equal to 1.0.

function given the surface optimized using only the stereo component. The main features
of both faces—nose, mouth, and eyes—have been correctly recovered. The improvement is
particularly striking in the case of the face in Figure 10. The shading component was able to
achieve this result because it uses the monocular information around the specularities. The
stereo component cannot take advantage of the information around the specularities because
very few points are visible in at least two images simultaneously, and because there is little
texture. Of course, the effect of the specularities has not completely disappeared (there
is indeed still a small artifact on the nose), but has been outweighed by the surrounding
information. A more principled approach to solving this problem would be to explicitly
include a specularity term in our shading model.

The graphs of Figure 11 depict the behavior of the stereo and shading components of the
objective function for the two triplets. The four values of the scores to the left of the thick
dotted line, Sto to Sts, correspond to the results shown in the top row of Figures 9 and 10.
The fifth value, St 4+ Sh, corresponds to the final results when shading is turned on. These
values have been scaled so that St is equal to one for both triplets. As in the synthetic case,
when using stereo alone, the stereo component always improves, but as the recovered surface
becomes rougher the shading term degrades dramatically, indicating excessive wrinkling of
the surface. However, when we turn on the shading component, the overall results improve
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Figure 12: (a) Values of the ¢, coeflicients of Equation 7 for the final face result of Figure
9. The stereo term is dominant in areas where albedo changes rapidly such as
the mouth and the eyes, and the shading term elsewhere. (b) The contribution
of each facet to the stereo term. (c) The contribution of each facet to the shape
from shading term.

significantly, even though the stereo component degrades slightly. For both faces, the major
differences between the initial and final estimates occur in the nose area. In the original
meshes, the nose tends to be oversmoothed resulting in differences of up to 15mm in terms
of distance to the camera planes, or approximately six pixels in terms of disparity.

5.2.3 Ground-level Scene

In our final example, shown in Figure 13, we reconstruct a ground-level scene using three
triplets of images acquired by the INRIA mobile robot. For each triplet, we have computed
a correlation map. We have then used the technique described in (Fua and Sander 1992)
to merge the resulting 3-D points and generate a Delaunay triangulation. Because the tops
of some of the rocks are sharply slanted, the result is relatively rough and can be refined
using our technique. As before, stereo alone with little smoothing yields a surface that is
too wrinkly. However, by combining stereo and shape from shading, we compute a surface
model in which the rock silhouettes are well defined.

6 Summary and Conclusion

We have presented a surface reconstruction method that uses an object-centered represen-
tation (a triangulated mesh) to recover geometry and reflectance properties from multiple
images. It allows us to handle self-occlusions while merging information from several view-
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Figure 13: (a,b,c) The first images of three triplets taken by a mobile robot at different
locations. (d) Rough ground level surface computed by combining correlation-
based results from each triplet. (e) Optimized surface using stereo alone (f)
Optimized surface using both stereo and shape from shading. (Courtesy of

INRIA)

points, thereby allowing us to eliminate blindspots and make the reconstruction more robust
where more than one view is available. The reconstruction process relies on both monocular
shading cues and stereoscopic cues. We use these cues to drive an optimization procedure
that takes advantage of their respective strengths while eliminating some of their weaknesses.

Specifically, stereo information is very robust in textured regions but potentially un-
reliable elsewhere. We therefore use it mainly in textured areas by weighting the stereo
component most strongly for facets of the triangulation that project into textured image
areas. The stereo component compares the gray-levels of the points in all of the images
for which the projection of a given point on the surface is visible, as determined using a
hidden-surface algorithm. This comparison is done for a uniform sampling of the surface.
This method allows us to deal with arbitrarily slanted regions and to discount occluded areas
of the surface.

On the other hand, shading information is mostly helpful in textureless areas. Thus, we
weight the shading component most strongly for facets that project into textureless areas.
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For utilizing shading information, the component uses a new method that does not invoke
the traditional assumption of constant albedo. Instead, it attempts to minimize the variation
in albedo across the surface, and can therefore deal with both constant albedo surfaces as
well as surfaces whose albedo varies slowly. However, it does require the boundary conditions
that are provided by the stereo information.

We have developed a weighting scheme that allows our system to use each source of
information where it is most appropriate. As a result, for the large class of surfaces that
roughly satisfy the Lambertian model, it performs significantly better than if it were using
either source of information alone.

Here we have concentrated on Lambertian surfaces, where the image intensity of a surface
point is independent of the direction from which it is viewed. Consequently, we have been able
to directly use the intensity in both the stereo component of our algorithm, by using image-
intensity correlation, and in the shape-from-shading component, by averaging the intensity
at one surface point across all of the input images. Non-Lambertian surfaces cannot be dealt
with in this manner.

In future work, we wish to extend our algorithm to the class of non-Lambertian surfaces
for which it is possible to unambiguously compute the parameter(s) of the surface reflectance
function given the image intensity, viewing direction, light-source direction, and surface
normals (all of which are available during our optimization procedure, either directly or
from the current estimate of the surface). An example of such a reflectance function is
the model proposed by Oren and Nayar (1993) for known values of the surface roughness
parameter. For this class of surfaces, we can use the estimated parameters to compute
our objective function. For example, we can replace our intensity-correlation term by the
variance of the estimated parameters across the input images at one surface point, and our
shape-from-shading term by the average of these parameters across the input images at one
surface point. This approach has the added advantage that it can be used in situations where
the light-source direction is different for each image (as is often the case with aerial images).

Also in future work, we intend to investigate more complex topologies than the ones
shown here, multiple resolutions and the shrinking or growing of the surface of interest. We
have concentrated so far on a better understanding of the behavior of the objective function,
but we believe that our approach can naturally support these extensions.
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Abstract

We present a framework for 3-D surface reconstruction that can be used to model fully 3-D scenes from an
arbitrary number of stereo views taken from vastly different viewpoints. This is a key step toward producing
3-D world-descriptions of complex scenes using stereo and is a very challenging problem: real-world scenes tend
to contain many 3-D objects, they do not usually conform to the 2-1/2-D assumption made by traditional
algorithms, and one cannot take it for granted that the computed 3-D points can easily be clustered into separate
groups. Furthermore, stereo data is often incomplete and sometimes erroneous, which makes the problem even
more difficult.

By combining a particle-based representation, robust fitting, and optimization of an image-based objective
function, we have been able to reconstruct surfaces without any a priori knowledge of their topology and In spite
of the noisiness of the stereo data.

Our current implementation goes through three steps—initializing a set of particles from the input 3-D data,
optimizing their location, and finally grouping them into global surfaces. Using several complex scenes containing
multiple objects, we demonstrate its competence and ability to merge information and thus to go beyond what
can be done with conventional stereo alone.




1 Introduction

Reconstructing arbitrary 3-D surfaces from stereo image pairs—or more generally N-tuplets—remains an unsolved
problem because they provide incomplete, and sometimes erroneous, information about the location of 3-D points
in space. Grouping these points into meaningful surfaces involves solving a problem akin to the notoriously hard
segmentation problem. As a result, a majority of recent computer vision approaches to surface reconstruction rely
on much cleaner sources of 3-D data—such as laser range maps or medical volumetric data—as their input. Many of
these approaches also assume that there is one, and only one, object of interest whose topology is known in advance
so that a particular model—be it rigid or deformable—can be fit to the data.

Stereo, however, is a purely passive technique that only involves the use of relatively inexpensive and dependable
sensors and often is the only feasible approach. We propose a novel alternative to conventional stereo reconstruction
that overcomes many of the difficulties that traditional approaches encounter in the reconstruction of 3-D surfaces
from stereo imagery.

More specifically, to recover surfaces from stereo, one must contend with the following problems:

o Real-world scenes often contain several objects whose topology may not be known in advance: some surfaces
are best modeled as sheets while others are topological spheres or contain holes. One cannot typically assume
that there is only one object and one surface of interest or expect to be able to easily cluster the 3-D points
derived from stereo into semantically meaningful groups.

e The 2-1/2-D assumption that most traditional interpolation schemes make is no longer valid when reconstruct-
ing complex 3-D scenes from arbitrary numbers of images and arbitrary viewpoints. Surfaces often overlap
and may be visible in one view but not another.

¢ The 3-D points derived from disparity maps form an irregular sampling of the measured surfaces. In addition,
small errors in disparity can result in large errors in world position.

o Even the best stereo algorithms make occasional blunders that must be identified and eliminated. Furthermore,
the corresponding erroneous 3-D points are often correlated with one another so that they cannot be eliminated
by robust estimation alone.

To address these problems, our approach

o Relies on an object-centered representation that can handle surfaces of arbitrary complexity, specifically a set
of connected surface patches or “oriented particles” as defined by Szeliski and Tonnesen [1992].

e Refines the surface’s description by minimizing an objective function that combines terms measuring both
surface smoothness and gray scale correlation in the input images of the surface points’projections.

We typically start with a set of stereo pairs or triplets. We compute disparity maps for each of them, fit local quadric
surface patches to the corresponding 3-D points, and use these patches to instantiate a set of particles. We then
refine their positions by minimizing the objective function, thereby returning to the original image data. Finally, we
impose a metric upon the set of particles that allows us to cluster them into meaningful global surfaces.

Our technique allows the modeling of complex 3-D scenes whose topology is unknown a priori from stereo data
without the need to rely on other sources of range data. This ability is valuable for applications, such as robotics and
high-resolution cartography, where precise scene models are not always available. For example a mobile robot must
be able to distinguish the ground from objects lying on it to model obstacles and avoid them. Similarly, to grasp and
manipulate objects, a robot must be able to distinguish and model them. In the case of low-resolution cartography,
the earth’s surface can indeed be relatively well modeled as a single surface. At high-resolution, however, this stops
being true: objects such as trees or buildings must be modeled as separate 3-D surfaces, and the usual 2-1/2-D
assumptions break down.

In the following section, we describe related work and our contributions in this area. We then present our
framework in detail, discuss the procedure’s behavior on synthetic data, and show results on real images of complex

Scenes.




2 Related Work and Contributions

Many recent publications describe the reconstruction of a surface using 3-D object-centered representations, such
as 2-1/2-D grids [Robert et al., 1992], 3-D surface meshes [Cohen et al., 1991, Delingette et al., 1991, Terzopoulos
and Vasilescu, 1991, Vemuri and Malladi, 1991, McInerney and Terzopoulos, 1993, Koh et al., 1994, Chen and
Medioni, 1994], parameterized surfaces [Stokely and Wu, 1992, Lowe, 1991], local surfaces [Sander and Zucker, 1990,
Ferrie et al., 1992, Stewart, 1994], particle systems [Szeliski and Tonnesen, 1992}, spanning trees [Hoppe et al., 1992],
and volumetric models [Pentland, 1990, Terzopoulos and Metaxas, 1991, Pentland and Sclaroff, 1991, Park et al.,
1994]. Most of these rely on previously computed 3—-D data, such as the coordinates of points derived from laser range
finders or correlation-based stereo algorithms, and reconstruct the surface by fitting it to these data in a least-squares
sense. In other words, the derivation of the 3-D data is completely divorced from the reconstruction of the surface.
Errors and imprecisions in the original 3-D input data can jeopardize irretrievably the quality of the reconstruction.

In previous work, we began addressing this issue by developing an approach to 3-D surface reconstruction that
uses image cues while recovering the surface’s shape [Fua and Leclerc, 1994a, Fua and Leclerc, 1994b). It uses an
object-centered representation—specifically a 3-D triangulated mesh—and can take advantage of both monocular
shading cues and stereoscopic cues from any number of images to refine the model while correctly handling self-
occlusions.

However, in our previous approach—as in most of those mentioned above—it is assumed that the range data
used to initialize the models can easily be clustered into separate groups that define distinct objects. A separate 3-D
model can then be fitted to each object. For complex scenes, this clearly is much too strong an assumption. The
technique presented in this paper, was specifically designed to eliminate the need for this assumption. It replaces
our triangulated meshes by a particle system that does not require any a priori knowledge of the surface’s topology
and lends itself to the definition of a metric that has allowed us to effectively cluster local surface patches into global
ones.

The particles can adjust so as to minimize an objective function that is the sum of an image-based term and of a
regularization term. The image-based term is a generalization of the multi-image intensity correlation term we used
in our mesh work, except for the fact that we replace the triangular facets by circular surface patches attached to
each particle. Optimization allows us to refine the position of legitimate particles and to eliminate spurious ones.
Consequently, we do not have to depend on the input 3-D data to be error-free to achieve good results. This is in
contrast to Szeliski and Tonnesen’s particles [1992] that have been used to great effect to model high quality medical
data but make no provisions for noisy and incorrect data points.

To instantiate our set of particles, we robustly fit local surfaces to the raw disparity data in a manner that is
closely related to other local surface techniques e.g., [Sander and Zucker, 1990, Ferrie et al., 1992, Hotz et al., 1993,
Stewart, 1994]. In our approach, however, these local surfaces are not the end result since they can be refined and
either accepted as part of a global surface or rejected. In spirit, our approach is closely related to that advocated by
Hoff and Ahuja {1987] because it combines the processes of feature matching and surface interpolation. Unlike this
earlier work, however, our technique is not limited to pairs of images.

We view the central contribution of this paper as twofold. First, we provide a specific alternative framework that
explicitly addresses many of the problems of conventional stereo and a representation in which they can be solved.
Second, we demonstrate that our implementation of this framework actually solves some of the problems involved in
reconstructing complex 3—-D surfaces of unknown topology and provides a foundation on which to build a solution
for the others.

3 From Raw Stereo Data to Global Surfaces

Our approach to recovering complex surfaces is to model them as sets of local surface elements that interact with
one another. Following Szeliski and Tonnesen [1992], we refer to the surface patches as “oriented particles.” The
forces that bind them can be understood as “breakable springs” [Terzopoulos and Vasilescu, 1991] that tend to align
the particles with each other but may break for particles that are too far out of alignment.

We use several sets of stereo pairs or triplets of a given scene as our input data. We assume that the images
are monochrome and registered so that their relative camera models are known a priori. Since we are interested in




reconstructing surfaces, we start the process by using a simple correlation-based algorithm [Fua, 1993} to compute
a disparity map for each pair or triplet and by turning each valid disparity value into a 3-D point. If other sources
of range data were available, they could be used in a similar fashion. These 3-D points typically form an extremely
noisy and irregular sampling of the underlying global 3-D surfaces. To effectively model these, we take the following
steps:

1. Robustly fit particles to the raw 3-D points.
2. Refine the positi‘on and orientation of the particles by minimizing an image-based objective function.
3. Eliminate spurious particles and cluster those that appear to belong to the same global surfaces.

In the remainder of this section we first introduce our particles and then describe our technique in more detail.

3.1 Oriented Particles

Our surface elements are disks whose geometry is defined by the positions of their centers, the orientations of their
normals and their radii. In theory, these disks have six degrees of freedom. However, when modeling a global surface
in terms of such disks, translations along the tangent plane of the surface can be ignored as long as the disks remain
roughly equidistant from one another and the radius can be chosen so that the disks approximately cover the surface.
Therefore, in practice, we deal with only three degrees of freedom.

(b) ()

Figure 1: Data structures and metric. (a) A particle is a disk to which we associate a local referential. We allow
the center of gravity to shift along the z axis and parametrize the orientation using the projections of
the normal vector on the x and y axes. (b) The input 3-D points are stored in a cube-shaped set of
voxels and we instantiate a particle in each voxel containing enough such points. (c) The “distance”
between two particles is primarily a function of the distance of the center of gravity of one particle

from the tangent plane of another.

As shown in Figure 1, to achieve an orientation-independent implementation, we assign to each particle a local
referential. As discussed in Section 3.2, we instantiate this referential by robustly fitting surface patches to the 3-D
points within local neighborhoods and using the surface normals to define the local z directions. We define a particle’s
position by the translation of the center along the local vertical and its orientation by the x and y projections of
the normal on the local x and y axes. This particular parametrization is most favorable when the local vertical is
relatively close to the normal of the surface under consideration for two reasons. First, the x and y projections of the
particle’s normal vector will then be relatively small and the interaction forces between particles almost quadratic
in terms of those parameters. Second, displacements along the local z axis will be close to being normal to the
underlying surface and thus precisely the ones that are most significant in terms of recovering its shape.




3.2 Initialization

To generate a set of regularly spaced particles from our noisy stereo data, we pick spatial step sizes d,,8, and 4, along
the X,Y and Z axes of an absolute referential. We use them to define a cube-shaped set of 3-D buckets, such as the
one of Figure 1(b). We then store the 3-D points computed from our initial correlation data into the appropriate
buckets. By fitting a local surface to every bucket containing enough points, we generate particles whose center is
the projection of the bucket’s center onto the surface and whose orientation is given by the surface’s normal at that
point. In the presence of very noisy data, the projection may fall outside of the bucket. In this case, we reject the
particle thereby, ensuring that there is only one particle per bucket and that the particles are regularly distributed.

In general, most of the 3—D buckets will be empty. Therefore we do not store the set of 3—-D buckets as a cube
but as a hash-table allowing for both compact storage and easy computation of neighborhood relationships.

For the initialization phase to be successful, it is important both to choose the right kind of surface model and
to use a robust method to perform the fitting. We have used both planar and quadric models. The quadrics, even
though they involve more computation, have proven very effective because they allow the use of larger sets of points
than planes without introducing any appreciable bias. In our implementation, we take advantage of this by fitting,
to each bucket containing enough points, a plane of form

ar+by+cz=h
when z,y and z are coordinates in the absolute referential. We then fit a quadric of form
2 =az's’ + b2’y +cyy +dr’ +e + f

where z’,y' and 2’ are coordinates defined by the plane. We use not only the points in the bucket under consideration
but also in the buckets that are its immediate neighbors. This method allows us to fit local surfaces of arbitrary ori-
entation using a relatively large set of 3-D points, and tends to enforce consistency of orientation among neighboring
particles.
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Figure 2: Iterative Reweighted Least Squares. (a) We first use standard least squares to fit an initial surface
patch to the set of noisy points and compute the distance d of these data points to the fit. The points
are denoted by the black circles, and the initial patch is labeled 1. (b) We weigh each data point
inversely proportionally to d, fit a new surface, and iterate the procedure, thereby generating the fits
labeled 2 and 3. After a few iterations, the contribution of the outliers becomes negligible. (c) The
influence function of the data points is shown as a solid line. For comparison’s sake, a Lorentzian
influence function, scaled so as to have the same maximum, is shown as a dashed line.

Because of the noisiness of the input data, a robust surface-fitting method is essential. In this implementation,
we use a variant of the Iterative Reweighted Least Squares [Beaton and Turkey, 1974] technique, as illustrated by
Figure 2. To fit a surface of equation f(z,y,2) = 0 to a set (z;, ¥, zi)1<i<n of n 3-D points, we minimize a criterion

of the form
Z w; f(zi, yi, z)° (1)
1<i<n




where the w; are weights. At the first iteration the w; are all taken to be equal to one so that the first fit, fo, is a
regular least-squares fit. We use fy to compute a new set of weights

N d
d = median|fo(zi, i, %) |i<i<n (2)

w; = exp( forl<i<n

and to fit a new surface f; by reminimizing the criterion of Equation 1. In effect, we use the median distance of
the points to the fitted surface as an estimate of the noise variance, and we discount the influence of points that are
more than a few standard deviations away. This approach can be related to the use of Lorentzian estimators [Black
and Rangarajan, 1994] because the influence function of the data points, shown in Figure 2(c), has roughly the same
shape. However, it requires no a priori estimate of the variance of the noise and involves only least-squares, and
therefore fast, minimization.

By iterating this procedure a few—typically five—times, we have been consistently able to fit our quadric surfaces
to noisy data, even in the presence of large numbers of outliers. Figure 3 illustrates the robustness of our algorithm.

3.3 Clustering

To cluster the isolated particles into more global entities, we define a simple “same surface” relationship R between
particles P; and P; as follows:
P{RP]' — dpal't(Piy PJ’) < maxy (3)

where dpart is a distance function and maxy a distance threshold. We could take dpart to be the Euclidean distance
between particle centers. However, such a distance would not be discriminating enough for our purposes because it
is circularly symmetric and does not take the particles’orientation into account. It has proved much more effective
to define a distance function that penalizes more heavily the distance of one particle’s center from the tangent plane
of the other than the distance along the tangent plane. The simplest way to achieve this result is to define dpart as
follows:

d;i = kzl+(1-k)(}+y))
G o= k(- ) "
dpart(Pi, P;) = maz(di, d;)

where z;,y; and z; are the coordinates of the center of P; in a referential whose Z direction is the normal of P; and
whose origin is the center of P;, as shown in Figure 1(c), and k is a constant larger than 0.5. In this paper, we take
k =0.9; z;,5; and z; are defined symmetrically.

In essence, the threshold maxy on dpapt limits the curvature of the common underlying surface to which particles
may belong. As such it is domain dependent; here we take maxg4 to be a multiple, typically 1.5, of the median value
of dpart for all pairs of neighboring particles in the cube-shaped structure of Section 3.2.

The data set equipped with the relationship R can now be viewed as a graph whose connected components
are the surfaces we are looking for. In practice, there will usually be spurious particles that are weakly linked to
legitimate clusters. In such cases, we have found that removing all points that do not have a minimum number of
neighbors allows us to throw away the gross errors and generate meaningful clusters such as the ones depicted in the
last column of Figure 3.

3.4 Refining

Because it is extremely difficult to design a stereo algorithm that never produces correlated artifacts, we cannot
expect any robust fitting technique to exclude all erroneous 3-D points. Furthermore, fitting local surfaces to the
initial data amounts to smoothing and may result in spurious particles that appear to line up with legitimate ones
and become very hard to eliminate.
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Initializing particle sets. (a) Four sets of noisy 3-D points. In the first three, the majority of points—
90%, 80% and 60%, respectively—Ilie on a hemisphere while the remaining ones—10%, 20% and 40%,
respectively—are uniformly randomly distributed. In the fourth set, the points lie on two hemispheres.
(b) The particles instantiated by our robust fitting procedure. Note that there is not a particle in
every voxel because, as explained in the text, the obviously meaningless ones are eliminated. (c) The
particles that remain after clustering. All surviving spurious particles have disappeared. (d) A shaded
view of the same particles. They are rendered as lambertian planar patches.




To illustrate this point and to produce a difficult example that gives rise to some of the same problems we have
encountered when dealing with real imagery, we have generated the five synthetic images of a textured hemisphere
occluding a plane shown in Figure 4. Our inftent was to produce images ambiguous enough for a conventional corre-
lation algorithm to compute spurious disparities and to show that our refinement procedure provides the additional
power required to eliminate them.

) O] © F ©)

Figure 4: Constructing synthetic images of a hemisphere occluding a plane. We begin with the triangulated mesh
and real face image shown in the top row. We then consider the five views depicted by the middle row and
texture map the real image onto the triangulated mesh to produce the five synthetic images of the bottom
row. Obviously, these five images would have been easier to parse had we mapped a different texture
on the plane and the hemisphere. However, our intention in generating these images was to produce a
difficult example that gives rise to some of the same problems we have encountered when dealing with

real imagery.

On the left of the first row of Figure 5, we show a noise-free set of 3-D points that belong to either the plane
or the hemisphere and, on the right side, the particles that are instantiated by running our initialization procedure
on this set. In the leftmost column of the following rows, we show three subsets of all the 3-D points generated by
correlating pairs of these images—specifically (a) and (b), (a) and (c), (a) and (d), (a) and (e)—using three different
window sizes, 5x5 for the first row, 10x10 for the second, and 15x15 for the third. The second column from the left
depicts the particles that are instantiated using this data.

As the window size increases, the 3-D points appear to be smoother but, in fact, fit the data less well. Of course
this problem can be alleviated by using variable-shaped windows [Nishihara, 1984, Devernay and Faugeras, 1994]




Sl
‘.
s 4
; 3
g <+ - >4 ”ap g
_' - 4.' e X I . -
4 r a-d 3 b4
—+ t T . T3
(a) (b) (c) (d)

Figure 5: Running our complete procedure on the images of Figure 4. Top row: A set of 3-D points lying on
the surfaces used to generate the images and a shaded view of the particles that our procedure fits
to these points. Column (a): 3-D points computed by running a correlation-based algorithm on the
synthetic images by using, from top to bottom, fixed windows of size 5x5, 10x10, and 15x15. Column (b): .
The particles instantiated from these sets of points. Column (c): The same particles after optimization.

Column (d): For each set of particles, the two subsets that appear to belong to the same surface according
to our metric.




and, our approach to particle refinement can be viewed as a 3-D generalization of these purely image-based techniques.

A more serious problem stems from the presence of correlated but erroneous 3-D points on the right side of the
shape. These points are produced by the correlation windows that straddle the hemisphere and the plane, and line
up well enough so that the fitting procedure produces a set of surface patches that appear to be valid but do not
correspond to any physical surface.

To resolve such problems, it is necessary to return to the original images and assess the quality of each particle.
For each disk-shaped particle, we define a “multi-image intensity correlation” term by projecting the 3-D disks into
2-D elliptical patches in each image and measuring how well these patches correlate. This term is similar to the one
we defined in previous work for 3-D triangular facets [Fua and Leclerc, 1994a]. It is a function of the three degrees
of freedom of each particle and can therefore be used to perform optimization.

When using noise free synthetic images such as the ones of Figure 4, we have verified experimentally that,
for legitimate particles, the minimum of this image-correlation term occurs for positions and orientations that are
very close to the ones computed by simply fitting the disparity maps while the position of spurious particles may
be arbitrarily far from the minimum. In such an ideal case, the good particles could be separated from the bad
ones on that basis alone. However, when dealing with real images that are never entirely noise free, the situation
becomes more complex and the minima for the individual particles may shift substantially because of the noise.
A more practical approach is then to allow the particles to interact with one another and to rearrange themselves
to minimize an energy term that is the sum of the multi-image intensity correlation term discussed above and of
a deformation energy term that tends to enforce consistency between neighboring particles [Szeliski and Tonnesen,
1992]. As illustrated by the two rightmost columns of Figure 5, while optimizing the energy term, the particles that
actually correspond to the same underlying global surfaces will “stick together” and the ones that do not will tend
to move in separate directions, stop lining up with each other and be easily eliminated by the clustering technique
of Section 3.3.

Formally, we write the total energy of a set of particles £r as

ér=E&s:+Apép (5)

where Es; is the multi-image intensity correlation term, £p the deformation energy term, and Ap a weighting
coefficient.
We now turn to the formal definition of these energy terms.

3.4.1 Multi-Image Intensity Correlation

The basic premise of most correlation-based stereo algorithms is that the projection of the 3-D points into various
images, or at least band-passed or normalized versions of these images, must have identical gray levels. To take
advantage of this property in our particle-based representation, we define the stereo component of our objective
function as the variance in gray-level intensity of the projections in the various images of a given sample point on a
particle, summed over all sample points, and summed over all particles. This component is depicted by Figure 6(a)
and is presented in stages below.

First, we define the sample points of a disk-shaped particle P, of center xo, radius R and normal 7, by noting
that all points on a particle can be written as

X, = Xo + rcos(f)v; + rsin(f)vy; for 0<r < Rand0<8 < 2m (6)

where v; and vy are unit vectors chosen so that v;,vy and i form an orthonormal basis. We obtain our regularly
spaced sample points x,, ¢; by taking

.R .
i— 1<i1<n,
ne
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0; = 1< j < ng(r)

where ng(r;) = 2m%in, so as to ensure approximately uniform sampling of the disk.
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Figure 6: Computing the energy terms. (a) Particles are sampled uniformly; the circles represent the sample
points. The stereo component of the objective function is computed by summing the variance of the
gray level of the projections of these sample points, the g;s. (b) The forces that bind the particles are
computed as functions of their normal vectors, v; and v}, and of the vector rj; whose endpoints are
the centers of gravity.

Next, we develop the sum of squared differences in intensity from all images for a given point x. A point x in
space is projected into a point u in image g; via the perspective transformation u = m;(x). Consequently, the sum
of squared differences in intensity from all the images, o%(x), is defined by

) = Y (almix) - u)?

i=

Note that u(x) can be considered as the “gray level” of the sample point and by taking its median value over all
sample points of the particle, we can define the median gray level of a particle that we use for clustering purposes as
discussed in Section 3.5. Note also, that when using only two images, 0?(x) reduces to the square difference in gray
levels. In this case, our approach is equivalent to straightforward correlation with deformable windows but has the
advantage of generalizing to arbitrary numbers of images.

The above definition of o%(x) does not take into account occlusions of the surface: not all sample points of all
particles are visible in all images. In theory, this could be handled by generalizing the Z-buffering technique we used
in previous work [Fua and Leclerc, 1994a). However, in the current implementation we use a simpler heuristic. As
discussed in Section 3.2, the particles are initialized by computing disparity maps using pairs or triplets of images
and fitting local surfaces to the corresponding 3-D points. We record the origin of these points and associate to each
particle the set of two or three images that provided the largest amount of support for the local surface. We use
these images to compute 0% (x) because they are the ones in which the particle is most likely to be entirely visible.

The multi-image intensity correlation component £s; then becomes:

Est = Zggt (7)
k
Z:r,0 02 (x",o) (8)

gk
St Sk )

where sj is the total number of samples for particle k, E%, is the value of the correlation component for a single
particle and the summation over k denotes a summation over the set of all particles.

3.4.2 Particle Interactions
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Figure 7: Rearranging the particles of the second row of Figure 5 by minimizing the deformation energy alone.
The optimization progresses from left to right. All particles, but only a few outliers, end up lying on
one of two separate planes.

Following Szeliski and Tonnesen (1992], we define a conormality potential £ and a coplanarity potential SZ{;
between particles ¢ and j by writing

£L = 172w - w5’ =1 - minj
£2 = 1/2((mr)? + (W)Y, 9)

where 1; and ni; are the normal vectors and 7 the vector joining the centers of the two particles, as shown in
Figure 6(b). These terms control the surface’s resistance to bending and we take our overall regularization terms £p
to be

Ep = Z F(ES + £8) (10)

where the summation over 7 and j denotes a summation over all pairs of particles that are neighbors in the cube-
shaped structure of Section 3.1, and f is a monotonically increasing function. In practice we implement the concept
of breakable springs by taking f to be

f(z) =log(1+z/s)

with s being a fixed constant so that, as in Section 3.2, the interaction forces have a Lorentzian behavior [Black and
Rangarajan, 1994]. As the particles move out of alignment, the strength of the interaction increases up to a point
after which the interaction strength decreases and eventually vanishes.

In our implementation, we have not found it necessary to weight the interactions: by construction, our particles
tend to be equidistant and cannot slide along the surfaces because they have only three degrees of freedom. In Figure
7, we show the result of rearranging one of the sets of particles from Figure 5 by minimizing £p alone.

3.5 Global Optimization

Recall that the total energy of a set of n particles is written as
Er =E&st+ Apép .

Since each particle has three degrees of freedom, £t is a function of 3n state variables. In this work, we use conjugate
gradient to minimize it and dynamically compute Ap so that the two energy terms have comparable influences [Fua
and Leclerc, 1994b).

In general, £s;, the image-correlation term, is not convex and conjugate gradient may not find a global minimum.
The presence of £p, the deformation energy, which tends to convexify the energy landscape alleviates the problem
but may prove insufficient for large sets of particles. In such cases, an effective way to achieve a desirable minimum
of the objective function is to cluster the particles into smaller subsets, to optimize each subset independently, and
to reiterate the process until a stable solution is found. In practice, this can be achieved either by using the metric
of Section 3.3 to break the set of particles into smaller subsets or by histograming the median gray levels of the
particles, as defined in Section 3.4.1, and grouping those that fall into the same histogram peaks. The latter makes
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sense in the absence of surface markings because particles that have similar gray-levels are more likely to belong
to the same underlying surfaces than particles that do not. This heuristic has been used to produce the results of
Section 4 but is clearly too simple and will need refinement in future work. Note, however, that this grouping scheme
is only used as a device to speed up the optimization: it need not be perfect since no final decision is based on it.

4 Results

In this section, we demonstrate the applicability of our method on a variety of imagery.

4.1 Evaluating Components of the Approach

We first use four stereo pairs of images of a head to illustrate the effectiveness of the initialization and clustering
methods of Sections 3.2 and 3.3, given relatively clean stereo data. The 512x512 images, shown in Figure 8, are part
of a sequence of forty that were acquired with a video camera over a period of a few seconds by turning around
the subject who was trying to stand still. Camera models were later computed using standard photogrammetric
techniques at the Institute for Geodesy and Photogrammetry, ETH-Ziirich.

o

Figure 8: Head images (Courtesy of ETH-Ziirich). (a,b) A stereo pair of a person’s head as seen from one
side. (c) The corresponding disparity map. Black indicates that no disparity value was computed,
and lighter areas are further away than darker ones. Note that the disparities around the occluding
contour on both the left and right sides of the head are erroneous. (d,e,f) The left images of three
other stereo pairs of the same person taken from different viewpoints.

We ran our correlation-based algorithm [Fua, 1993}—once for each consecutive pair of images in the sequence—
stored the resulting 3-D points in a 80x80x80 set of voxels and instantiated particles in all voxels containing at
least 200 points. The results are shown in the first row of Figure 9. Because we use a large number of images,
the main features of the head—including the nose, mouth, chin, ears and even the boundary of the skullcap—are
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Figure 9: Modeling the head. Row (a): Four shaded views of the particles instantiated by fitting local surfaces
to the 3-D points derived by correlating the images of Figure 8. Row (b): Similar views of the subset
of particles that belong to the same global surface. Erroneous ones on the side of the nose and the
back of the head have been eliminated.

clearly captured by our representation. However, because the correlation-based algorithm produced erroneous, but
not random, disparities around occlusion boundaries, we also find a number of spurious particles around the nose,
chin and back of the head. To get rid of them we computed the distance of Section 3.3 and eliminated all particles
not having at least four neighbors within 1.2 times the median distance between neighbors, as shown in the second
row of Figure 9. In this specific example, optimizing the positions of the particles yields a result that is virtually
indistinguishable from the one presented here.

To demonstrate the accuracy that can be obtained by minimizing the total energy of Section 3.4, we use the
512x256 aerial images of Figure 10 and evaluate our results against the “ground truth” supplied to us by a pho-
togrammetrist from Ohio State University. We ran our correlation-based algorithm, instantiated a set of particles
using a 50x50x1 set of voxels, and refined their positions by minimizing the total energy of Equation 5. In Fig-
ure 10(h), we plot the vertical distance of the particles’centers from the triangulated surface defined by triangulating
the control points. The Root Mean Square distance is 0.19 meter, which corresponds to an error in measured dis-
parity that is smaller than half a pixel. Given the fact that the control points are not necessarily perfect themselves,
this is the kind of performance one would expect of a precise stereo system [Giielch, 1988). As discussed previously,
in this simple case where only two images are used, our approach is equivalent to a correlation-based approach with
deformable windows.

4.2 Reconstructing Complex 3-D Scenes

We now turn to the scene of Figure 11 whose modeling requires multiple viewpoints and a full 3-D representation.
These images were acquired by setting a wheel and a box on a turntable and using the INRIA trinocular stereo rig
to take seven triplets of images by rotating the turntable. In this case and in all views, the wheel presents surfaces
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Figure 10: A stereo data set (courtesy of Ohio State University). (a,b) An aerial stereo pair. (c,d) Matched pairs
of points hand-entered by a photogrammetrist. (e) Shaded view of the triangulated surface formed
by the corresponding 3-D points. (f) The particles instantiated using a correlation-based disparity
map after minimization of the total energy of the set. (g) Shaded view of the surface generated by
triangulating the centers of the particles. (h) A plot of the vertical distance, in meters, from these
centers to the “ground truth” surface of Figure 10(e). The RMS distance is equal to 0.2 meter, which
corresponds to an error of approximately 0.4 pixel in disparity.

) -
W
[
[+]

that are sharply slanted away from the cameras. The correlation data and the corresponding 3-D points, depicted by
Figure 12(a), are much noisier than before. As a result, as shown in Figure 12(b), many more spurious particles are
generated so that it becomes very difficult to distinguish the wheel from the base it rests on and from the erroneous
fits. More specifically, there is no setting of the distance threshold that can cleanly separate the particles that sit on
the wheel’s surface from other ones. However, the optimization of the total energy of the set of particles produced
enough of an improvement, shown in Figure 12(c), so that the clustering technique of Section 3.3 became able to
effectively select the legitimate particles used to produce the shaded views of the figure’s second row. This example
demonstrates the ability of our object-centered representation to effectively pool the information from very different
views to refine the representation beyond what could be done using only conventional stereo followed by robust
surface fitting without reference to the original image data. '

In Figure 13, we use the same setup and the same wheel as for the images of Figure 11, but we have added objects
and use twelve triplets that span to a full 360 degrees of rotation of the turntable. The second row depicts the 3-D
points computed by our simple correlation-based stereo algorithm. Note all the spurious points “floating” above the
actual objects. For comparison’s sake, we have verified that another correlation algorithm [Hannah, 1988), which is
more sophisticated and is considered as one of the best ones currently available [Giielch, 1988], yields similar results.
In fact, no setting of its parameters can effectively eliminate these points without also eliminating many of the real
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Figure 11: Images of wheel (Courtesy of INRIA). (a,b,c) A triplet of images of a wheel resting on a box sitting
on a turntable. (c) Corresponding disparity map. Because the surface of the tire in the top left part
of the wheel is slanted away from the camera, the disparities are of very poor quality in that part of
the image. (e,f) First images of two other triplets acquired by rotating the turntable. The five other
triplets used in this example were acquired for turntable positions that were intermediate between

those of (e) and (f).

structures as long as one uses only pairs of images.

By running our system using the same parameters as before, except for the distance threshold, we generate the
shaded representation shown in the third row of Figure 13. Note that the various objects—the wheel, the model
of a brain, and the sides of the box on which they rest—appear clearly. However, our simple clustering mechanism
does not pull them out as separate objects because it essentially uses the same threshold on surface curvature for
the whole scene. In this case different thresholds are required for the different objects, and a more sophisticated
heuristic—such as computing the distance threshold on a more local basis—would be required to achieve a complete
segmentation. Finding optimal groups of particles can be recast as the problem of finding the best description of
the scene in terms of this specific vocabulary given the input data. A possible approach would then be to use the
Mininum Description Length [Rissanen, 1987] as was done by Leonardis et al. to extract surface patches from range
data [1990]. Note also the hole in the wall of the wheel’s tire in Figure 13(i). Careful examination of the original
correlation data, reveals that 3-D data was particularly sparse there, presumably because that part of the tire is
almost completely black. Such holes could potentially be filled by introducing a particle creation mechanism [Szeliski
and Tonnesen, 1992].

In our final example, shown in Figure 14, we reconstruct a ground-level scene using three triplets of images
acquired by the INRIA mobile robot. The ego-motion of the robot was computed by extracting 3-D segments and
matching them across views [Zhang and Faugeras, 1990]. Note that the five main rocks in the scene, including one
that overhangs, appear in the reconstruction.
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Figure 12: Modeling the wheel. (a) A subset of all the 3-D points computed by running a correlation-based
algorithm on each of the image triplets. (b) The particles instantiated by fitting local surfaces to the
3-D points originating from seven noisy disparity maps. (c) The same particles after minimization of
the total energy of the set. (e,f,g) Shading views of the set of legitimate particles after elimination of
the spurious ones.

5 Conclusion

We have proposed a framework for 3—D surface reconstruction that can be used to model fully 3-D scenes from an
arbitrary number of stereo views taken from vastly different viewpoints. By combining a particle-based representation,
robust fitting, and optimization of an image-based objective function, we have been able to reconstruct surfaces
without any a priori knowledge of their topology.

Our current implementation goes through three steps—initializing a set of particles from the input 3-D data,
optimizing their location, and finally grouping them into global surfaces. We have demonstrated its competence and
ability to merge information and thus to go beyond what can be done with conventional stereo alone.

However, as the quality of the input data decreases and the size of the problems we want to deal with increases,
some of the current heuristics—specifically the ones used to cluster the particles for the purposes of both optimizing
the set and rejecting outliers—may prove too simple. To push the method forward, it will be necessary to develop
more sophisticated grouping techniques and to introduce new heuristics to fill in holes in the original correlation
data. The basic framework, however, will remain because it provides the primitives required to implement these
additional capabilities.
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